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A COGNITIVE MODEL OF COLLEGE MATHEMATICS PLACEMENT
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Frank Joseph Swehosky, Ph.D.
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Supervising Professor: L. Ray Carry

This study developed and validated the Cognitive Model of
College Mathematics Placement and compared its effectiveness to
that of Willingham's (1974) vertical placement model as well as the
two empirical models. The Cognitive model was based on Skemp's
(1979) theory of intelligent learning and Wilson's (1971) Model of
Mathematics Achievement. The Cognitive model was validated using
historical mathematics placement data from the graduating classes
of 1989, 1990, and 1991 at the United States Air Force Academy. The
study focused on the precalculus -- calculus placement decision.

The Cognitive model uses novel, or analysis level, placement
test items in an attempt to assess the degree of connectedness of
students' schemas and non-analysis items to assess the degree of
accuracy and completeness of their schemas relative to the
requirements of a precalculus course. Placement test scores may be
partitioned to give analysis and non-analysis subtest scores which
can then be used to predict students' achievement in calculus.
Students are placed Into precalcuius if their predicted final calculus
grades are below the cutoff score identified with the methods of
Appenzellar and Kelley (1983). ,
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Some of the conclusions of this study were:
1. A Cognitive Model of College Mathematics Placement could

be developed from Skemp's theory of Intelligent learning and Wilson's
Model of Mathematical Achievement with locally developed placement
examinations providing the predictor variables.

2. For the Classes of 1989, 1990, and 1991 at the U.S. Air
Force Academy, the Cognitive model was a marginally valid placement
system. The cognitive subscales were content valid but not, In
general, reliable. In addition, confirmatory factor analysis did not
provide any significant empirical support for the cognitive
classification of the placement test Items derived from expert
opinion. Reasonable levels of predictive validity of the cognitive
model were observed for the Classes of 1990 and 1991; however,
different sets of cognitive variables were significant predictors of
final calculus grades. The number of significant cognitive predictors
Increased with the number of unsuccessful students In calculus so
that all the cognitive variables were significant predictors of final
calculus grades for the Class of 1991.

3. In practical terms, the various placement models displayed
the same levels of effectiveness. The Willingham and the empirical
placement models consistently produced a small Increase In the
number of correct placements, but the Cognitive model consistently
provided a significantly better prediction of final calculus grades.
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CHAPTER I

INTRODUCTION

Statement of Problem

Many decisions face a college or university with each entering
freshmen class, and the United States service academies are no
different. One of the earliest decisions made at the United States Air
Force Academy (USAFA) Is the course placement of freshmen within
the core mathematics sequence. Presently the Department of
Mathematical Sciences (DFMS) at the USAFA uses a variety of data and
techniques to perform this placement. No learning theoretic rationale
has been articulated to support the use of the current techniques.

Learning theoretic rationales for mathematics placement
procedures are rare In the research literature despite the abundance
of studies about college mathematics placement. Willingham's (1974)
model of placement Is one of the most frequently cited learning
theoretic rationales.

Willingham (1974) developed 12 models of assignment,
selection, placement, and exemption. These models were based on
decision theory and GagnO's (1970) theory of instruction.
Willingham's most applicable model for placement In a college
precalculus-differential calculus sequence Is his vertical placement
model. The basic elements of this model applied In this context
Include (a) constructing a placement examination directly tied to the
precalculus course objectives to determine the students' levels of
achievement within the precalculus-calculus sequence; (b) randomly
placing students Into the sequences; and (c) using trait-treatment
Interaction (TTI) techniques (Cronbach & Gleser, 1957) to establish
the validity of the placement test using the final grades of the
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common course in the sequence as the outcome variable. When TTI
techniques cannot be used, Willingham suggested using other methods
to establish the validity of the test as a placement tool.

One of the shortcomings of Willingham's placement models is
that placement examinations' correlations with final course grades
commonly range between .40 and .60 (Aleamoni, 1979). Thus, while a
placement examination may yield different slopes of the regression
lines for students enrolled in the two sequences, i.e., differential
placement, the predictive power of the test may be quite low.

Although Investigators have studied the effectiveness of a
variety of prediction models (Gamache & Novick, 1985; Ervin, Hogrebe,
Dwinell, & Newman, 1984; Bingham, 1972; Dunn, 1966), few have
reported the theoretic Justification for the connection between the
predictors used and final course grades. Instead, most of these
prediction models were selected empirically on the basis of
predictive power.

Conspicuously absent from the rationale of placement systems
discussed In the literature are the recent advances in the area of
psychology termed "cognitive science" (Schoenfeld, 1987). The
emerging Information processing and schemata theories may explain
much of the student behavior that is observed in school mathematics.
Of particular Interest are the theories of Skemp (1979, 1987)
concerning mathematical learning. Skemp's theories suggest that
while prerequisite knowledge Is critical for forming new concepts, It
Is also Important that the prerequisite knowledge be adaptable to new
situations (Skemp, 1987). For knowledge to be adaptable, the
concepts must have been learned in a manner that facilitates
assimilation of new concepts, reconstruction of existing concepts,
and generalization of concepts to similar but unfamiliar situations.

Thus, what Is needed to predict success In learning
mathematics is not only a measure of the completeness of the
prerequisite knowledge, but also a measure of the adaptability of the
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knowledge. Skemp (1987) further suggested that the best way to
measure the adaptability of students' knowledge Is through
conducting diagnostic Interviews or through presenting the students
with situations that require application of knowledge in novel
settings. Since diagnostic Interviews are usually one-to-one
interviews, this technique Is impractical for the placement of large
entering freshmen classes. Alternatively, Skemp argued that
appropriate novel items can provide the needed assessments.
Wilson's (1971) model of mathematics achievement provides a
theoretical basis and suggests techniques for measuring knowledge in
novel settings.

Research Purpose and Questions

Two objectives of this study were (a) to establish and validate
a cognitive science model for college mathematics placement; and (b)
to improve the mathematics placement procedures for the
precalculus-calculus sequence at the USAFA. To this end, the
following research questions were Investigated:

I. Can a cognitive model for college mathematics placement be
developed from Skemp's theory of learning and Wilson's model of
mathematics achievement?

II. Which predictor variables are logically consistent with such a
model for college mathematics placement?

III. Does the Cognitive Model for College Mathematics Placement,
using the predictor variables Identified In II, produce a valid
placement procedure?
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IV. Does the Cognitive Model for College Mathematics Placement
produce a more effective placement than either the Willingham model
or the two empirically-based placement models used by the US Air
Force Academy?

Definitions

The following operational definitions were used by the
investigator in conducting this research:

American College Testing Program Assessment (ACT): A basic
Intellectual skills test to predict success In college. The testing
program contains four subtests: English Usage (ACT-E), Mathematics
Usage (ACT-M), Social Studies Reading, (ACT-S), and Natural Sciences
Reading (ACT-N). This test is frequently used by universities as an
admission and placement tool.

Correct placement: The agreement between the observed and
predicted success of students; a hit. For example, a student Is said to
be correctly placed if predicted and observed to be successful, or
predicted and observed to be unsuccessful. The student Is incorrectly
placed If predicted to be successful and observed to be unsuccessful,
or predicted to be unsuccessful and observed to be successful.

Cutoff score: The score on a mathematics test chosen to predict
successful and unsuccessful categories of students.

Course sequence: An academic treatment In which college
mathematics courses must be taken In a particular order. In this
research there was a prerequisite course (precalculus), which
covered prerequisite knowledge necessary for success In the
subsequent criterion course (calculus). The two-course sequence
was the precalculus course followed by the differential calculus
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course. This was referred to as the long sequence. Course sequences
may also consist of a solitary course. Thus, some students were
placed directly into the differential calculus course, i.e., the short
sequence.

Efficient placement: The result of applying placement procedures
such that the TTI observed using one placement procedure was
significantly larger than that found by using another placement
procedure. When a TTI Is not observed because of limitations, an
alternative definition may be used; the result when the number of
students correctly placed under one placement procedure was larger
than that observed from using the other procedure. Also, the results
of a generalized E-test may support the evidence of an efficient
placement.

Mathematics achievement: A multivartate psychological construct
described by a content-by-cognitive behavior matrix. The levels of
cognitive behavior are computation, comprehension, application, and
analysis as defined by Wilson (1971). Analysis Items are Items that
require students to apply knowledge, procedures, and algorithms In a
novel problem setting. Non-analysis Items are Items that are not
analysis Items.

Novel problem: A type of test Item whose solution has neither been
taught nor practiced. Novel problems are not defined by their
difficulty; rather they are defined In terms of the cognitive
requirements necessary for their correct solution.

Placement: The enrollment of students Into course sequences of
different lengths that have a common outcome criterion, end-of-
course-sequence achievement, In order to maximize the likelihood of
success of the students. Vertical placement Is the type of placement
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used when students are permitted to place out of one or more of the
prerequisite courses in a fixed sequence of courses.

The College Board Scholastic Aptitude Test (SAT): A test of
general intellectual skills and knowledge that are perceived to have
been developed both in and out of high school. The test is composed of
a Verbal (SAT-V) section and a Mathematical (SAT-M) section. This
test, as the ACT, is commonly used as a tool for admission and
placement at universities.

Success In a course sequence: The result when a student receives
a fInal grade of at least a C- in the criterion course.

Trait-treatment Interaction (TTI): The statistical result found
when a prediction model, using a trait measure to predict
achievement, is significantly improved by including a trait-by-
treatment vector.

Validity: The ability of a test to measure the trait (or combination
of traits) that It is designed to measure. Several types of validity
are usually investigated to establish the usefulness of a particular
test or set of procedures for placement purposes. Content validity
determines if a test contains items that adequately measure the
appropriate performance domain. Criterion-related validity provides
information about the relationship between test scores and criterion
scores of the trait; one type of criterion-related validity is
predictive validity, the ability of test scores to predict criterion
scores (e.g., final course grades). Another type of validity is
construct validity, which supports using a given test as an
appropriate measure of a psychological construct.



CHAPTER II

REVIEW OF RELATED RESEARCH LITERATURE

Introduction
L -

Research Questions I and II call for constructing a new
placement rationale and a model for Implementing placement
procedures in a college mathematics sequence based on cognitive
science learning theory. In support of these two questions, four
major areas of related research literature were reviewed In this
section: general placement theory, cognitive science learning theory,
measurement theory as applied to mathematics, and previous
investigations in the area of mathematics placement. Also included
in this section is a description of the proposed cognitive model for
placement in college mathematics.

The review of general placement theory emphasizes the work of
Cronbach and Gleser (1957) and Willingham (1974). These two works
establish the placement problem and provide the fundamental
rationale and techniques for developing and validating placement
instruments and procedures.

Willingham (1974) based his rationale for placement on Gagn6's
(1970) learning theory. An alternate view of learning from cognitive
science Is reviewed and argued to be useful In developing a new
rationale for mathematics placement. Three cognitive science
theories are briefly described: constructivism, Information
processing, and schema theory. Skemp's (1979) theory of learning
Incorporates these basic theories and seems, to this Investigator, to
be particularly applicable to mathematics placement.

Skemp's (1979) theory provides a basis for describing
successful mathematical behavior but does not provide operational

7
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definitions to construct and validate a placement examination.
Wilson's (1971) model of mathematics achievement provides the
technology for measuring the types of behavior specified by Skemp.
These two theories are synthesized to form the proposed Cognitive
Model of College Mathematics Placement. This synthesis Includes a
discussion of the theoretical basis and operational procedures of the
model in the context of a precalculus-differential calculus two-
course sequence.

Next, several dependent and Independent variables, commonly
used in previous college mathematics placement and prediction
studies, are evaluated with respect to their consistency with the
Cognitive model. This evaluation determined a set of Independent and
dependent variables that may be used In placing students Into a
college precalculus-calculus sequence.

General Placement Theory

Thorndike (1949) wrote one of the earliest books concerning
placement In which he methodically discussed the military personnel
placement Issues of World War II. His methods continued to be
developed by persons In Industry and business. Cronbach and Gleser
(1957, 1965) produced one of the first works that seriously analyzed
placement within the education setting. Willingham described their
work as a "classic and most comprehensive treatment of the logic and
psychometric characteristics of the placement problem" (Willingham,
1973, p. 99) to that date.

Cronbach and Gleser (1957) defined placement as the process
by which persons within an institution are put Into different
treatments. They rigorously formulated the mathematics procedures
for placement using classical decision theory In a variety of settings.
A key assumption in their procedure was that the treatments are
dependent upon a single aptitude factor. This assumption permits
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aspects of the decision problem to be separated according to the
nature of the test and the differences between competing treatments.
Specifically, Cronbach and Gleser assumed that "only a single aptitude
dimension is required to account for all communality between test
scores and payoffs" (Cronbach and Gleser, p. 38).

A typical placement setting for college mathematics is where
there are fixed course sequences with variable enrollments within
the sequences. For this setting Cronbach and Gleser suggested that
the ideal placement strategy is to maximize the payoff, usually a
grade, for each individual student. The cutoff for determining
placement is found through the technique of trait-treatment
interaction (TTI). This technique requires the grade function for
competing treatments to be graphed on a grade-by-trait surface. The
optimum a priori strategy for placement is to select the point that
maximizes the grade function.

Cronbach and Gleser proposed two criteria for judging the
utility of a placement test, "The power of the test to measure the
aptitude dimension s, and the power of s to predict differential
payoff [differential prediction]" (Cronbach & Gleser, 1957, p. 68). The
TTI techniques would then be used to establish the differential
prediction (payoff) of the test as well as determine the cutoff for
future placements.

Cronbach and Gleser suggested caution when using measures of
general ability In placement systems, a warning that has been
repeated through the literature.

Tests presently used may be ineffective for placement even
though they are good predictors within a treatment. Possibly
quite different types of Items would make superior placement
tests, because qualities which determine differential response
to various treatments are not generally those which best
predict criterion performance within one treatment. General
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mental ability, for example, is likely to be correlated with
success in mathematics no matter how the subject Is taught.
... A measure which predicted success under one treatment and
not the other would be a much better aid to placement than a
measure which predicts both (Cronbach & Gleser, 1957, p. 68).

Later Cronbach (1971 ) defended the basic TTI approach against
a general regression approach when judging the usefulness of a
placement test.

The utility of a test for placement depends on the difference In
regression slopes - not on the slopes or the correlation
directly. A 'validity coefficient' Indicating that test X predicts
success within a treatment tells nothina about Its usefulness
for placement (Cronbach, 1971, p.500).

It follows that a good placement test has high reliability and is able
to show a TTI. Cronbach and Gleser noted a difficulty with trying to
apply their methods in typical educational settings. This problem was
that "[tihe evaluation of outcomes, however, seems often to be
arbitrary J subjective, leading one to question whether any of the
conclusloi,, from decision theory can be trustworthy If the starting
point itself is open to dispute" (Cronbach and Gleser, 1957, p. 109).
So the TTI technique may not provide accurate information about the
placement process because grades, the payoff, are not always
assigned on an objective basis.

Cronbach and Gleser's (1957, 1965) work on placement was not
referenced as widely as It might have been In empirical studies of
mathematics placement systems. Their theoretical position,
however, was made more popular In education by Hills (1971).

Willingham (1973) characterized Hills' writing as "the most
comprehensive and generally useful summary of the use of tests In



selection and placement" (p. 100). Hills broadened the placement
definition to be the "assignment of personnel to different treatments
along a single dimension, though this may be a composite derived
from a procedure such as multiple regression" (Hills, 1971, p. 701).
Hills stated a rather common sense purpose of placement:

to situate the student in the course or treatment that will
challenge him but will not overwhelm him - to prevent his
wasting time or being bored on the one hand and to prevent his
failure due to lack of preparation or lack of sufficient
repetition or explication on the other (Hills, 1971, p.702).

Hills identified three criteria to evaluate the effectiveness of
placement: grades, persistence, and satisfaction. He noted that there
was a major problem with using each of these criteria since cutoff
scores, established with variables that predict the criteria, tend to
arbitrarily place students into courses. He cited the study of Dunn
(1966) as a prime example. Hills discussed several methods for
determining cutoff scores: quotas, probability of attainment of
selected criterion level, highest-level course with selected level of
predicted chievement, Cronbach and Gleser's decision theory
methods, .,. task analysis methods of Gagn6 (1962). Hills did not
extensively discuss this last method; however, Willingham (1974)
used Gagn6's theories to establish a theoretical basis for the
rationale for placement systems.

Hills preferred the decision theoretic approach as a method of
validating placement tests In various academic settings. He provided
a more understandable discussion of each of the placement situations
that Cronbach and Gleser described. Hills maintained that the fixed
treatments with either fixed or adjusted quotas are the most useful
for describing the placement situation In mathematics. He reiterated
that In this setting a placement test Is effective If there Is a
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substantial gain in the expected payoff, where the gain is a function
of the correlation between placement test scores and the underlying
trait. Thus, Hills preferred to use r rather than £2 as the appropriate
effectiveness index to judge the importance of a validity coefficient.

Both the works of Cronbach and Gleser (1957, 1965) and Hills
(1971) had a major impact on Willlngham (1974), who was the first
writer to establish placement on a firm learning theoretic basis.
Wlllingham comprehensively discussed student placement that
colleges and universities make and categorized the decisions based on
the nature of a common criterion and the nature of the trait
assessment (Table 1).

Table I
Major Classes of Alternate Treatments

Nature of the
Common Criterion

Other Educational
Trait End-of-course Outcomes (persistence,
Assessment Achievement satisfaction, etc.)
Aptitude or personal
charac Istic ASSIGNMENT SELECTION
Knowleuge of
subject matter PLACEMENT EXEMPTION
Note. Reprinted with permission from College Placement and
Exemption. (p. 18), by W. W. WillIngham, copyright @ 1974 by
College Entrance Examination Board, New York.

Willingham defined placement to be the optimal positioning of
students within a sequence based on how much the student knows
about the subject. He stated that the placement decision should be
based on a single, perhaps composite score that predicts a common
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criterion measure for students who received alternate treatments.
Willingham observed that the common criterion measure is frequently
the final grade in the course common to both treatments. The present
study is, for the most part, consistent with Willingham.

Within the framework in Table 1, Willingham developed a series
of 12 alternate models (Figure 1) including the vertical placement
model, model 3. Willingham used a precalculus-calculus sequence to
illustrate his vertical placement model. This model called for a
placement test which was closely connected to the course objectives
of the precalculus course. The test functions in two ways: (a) waives
the prerequisite course and (b) establishes the entry point within the
mathematics course sequence.

The vertical placement model Is related to the exemption
models in that the exemption models are specifically used to waive
course requirements. The distinction between the placement and
exemption models revolves around the Issue of the self-correcting
and reversible nature of the decision. In vertical placement, the
decision is self-correcting (i.e., the student Is able to disagree with
the placement) and reversible (i.e., the student may be placed Into a
different course). These features of the vertical placement model
allow the placement test to focus on the placement Issue rather than
the exemption issue. The exemption test uses the comparable
performance of students who satisfactorily completed the course as
the basis of exemption.

The essential goal of placement Is to match the capabilities of
the students with the mental demands made by the courses within the
course sequence. Willingham determined that the most appropriate
way to accomplish this goal is to analyze the course sequence with
respect to content sequence and structure. He found that Gagns
(1970) theory of learning and instruction provided a good framework
to describe these processes.
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Figure 1
12 Models for Exemption and Placement
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Gagn6 maintained that course content should be analyzed in
terms of a hierarchy of prerequisite knowledge. The knowledge may
be classified into eight types of learning that range from simple
signal learning to problem solving. The learning types are ordered
with the simple types of learning transferring to the higher order
learning. The learning hierarchy, described behaviorally, describes
what needs to be measured to determine if students have acquired the
capability. Willingham understood this to mean, for example, that
students who are ready for calculus should be able to demonstrate the
prerequisite capabilities that should have been learned in precalculus.
This assessment instrument would be constructed from the
behavioral objectives of the precalculus course. The students would
be placed into calculus only if their scores on the placement test
demonstrate sufficient mastery of the precalculus objectives.

Determining the level of sufficient mastery is an important
issue for Willingham. He, like Cronbach and Gleser (1965), maintained
that sufficiency of mastery, say in a precalculus-calculus sequence,
is related to the alternatives. In this example, sufficiency of
mastery can be translated into the likelihood of success in a short or
long precalculus-calculus sequence. Thus, Willingham adopted
Cronbach and Gleser's TTI techniques, with a slight adaptation, for
establishing the placement test score that would maximize the
success of the Individual student In the alternate treatments. The
adaptation was explained In the context of a placement decision
Involving precalculus and calculus. Willingham accepted that ". . . the
best possible placement measure [of the trait] might result from
weighting a, b, c [part scores on the placement test] for maximum
multiple correlation with final calculus achievement for those taking
the short sequence [students placed Into calculus first]" (Willingham,
1974, p. 84). The criterion for an effective placement test was the
presence of a TTI.
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Willingham further noted, however, that the TTI method
requires random placement of students of all levels of abilities Into
the course sequence. This Is generally not feasible In the college
setting since It Is often ethically Inappropriate to place someone
with obviously deficient college algebra skills Into calculus. Thus,
Willingham suggested alternative ways to validate a placement
examination: content validity, concurrent validity In conjunction with
content validity, predictive validity, and Instructional gains In a
pretest-posttest setting. Will1ngham emphatically stated, however,
that "predictive correlation between precalculus achievement and a
test administered before the precalculus course does not, In and of
itself, establish content validity or any sort of placement validity"
(Willingham, 1974, p. 85).

Wllllngham further attacked the common predictive placement
model and listed five shortcomings of this model:

1. Does not establish validity of the placement test.
2. Attempts to use the same placement variable at various
decision levels.
3. Uses multiple correlation and stresses obtaining high 2
val,.,;s rather than high correlation between the placement test
and the criterion.
4. The tendency to use general ability measures which reduces
the likelihood of obtaining differential placement.
5. The test Is less defensible for exempting students from
course requirements If It Is not a fair measure of the course.

Willingham summarized his position by saying, "placement procedures
must be primarily concerned with what students know, what
instructional alternatives they should follow, and what outcomes of
alternate treatments there are" (Willingham, 1974, p. 86). Ku and
Frlsble (1978) elaborated Willlngham's models of placement by
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describing various methods for evaluating components of a placement
system.

Ku and FrIsbie noted that placement systems were being
40 implemented and operated without periodic Inspection to check if the

systems continued to operate effectively. They suggested that an
evaluation plan be devised to monitor placement systems on a regular
basis. Specifically, to validate cutoff scores they suggested
evaluating the gain scores, performing follow-up studies to analyze
student performance after placement, monitoring the placement and
enrollment comparisons of the number of students who enroll against
the suggested enrollment by the placement system, asking students
about the effectiveness of their placement through student surveys,
and asking for Instructor feedback concerning the placement. In an
appendix, Ku and Frisbie provided a table listing potential evaluation
questions and associated data sources.

While Willingham developed a workable framework for
placement, described Its educational rationale, and provided a fairly
thorough review of placement research up to that point, he did not
provide enough information about how to develop and Implement a
good placement system. Aleamonl (1979) provided this practical
informatir In a systematic, eight step procedure designed to develop
and Implement placement systems:

1. Define the purposes of placement and exemption.
2. Determine the major Instructional objectives of the course
or course sequence.
3. Secure or develop an adequate test.
4. Determine the reliability and validity of the Instruments
through experimental administration.
5. Determine decision scores.
6. Arrange for routine administration.
7. Develop an evaluation plan.
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8. Develop a procedure for periodic review and modification.

Aleamoni also highlighted the importance of determining the cutoff
score and provided a 12-point procedural checklist for determining
decision scores. The checklist concentrated on how to gather data
and to present the suggested decision scores to decision makers. The
actual method of determining the cutoff score was left to the
researcher.

There is a fairly substantial body of research concerning how
to determine cutoff scores. Probably the most comprehensive
discussion was written by Livingston and Zieky (1982). Their manual
is a thorough, yet concise description of the major procedures used to
determine cutoff scores. Livingston and Zleky discussed methods
based on Judgments about test questions, methods based on individual
test-takers, and methods based on a group of test-takers. The
methods based on test questions require judges to decide If a C-
student would be able to arrive at the correct solution of each test
Item. The methods based on Individual test-takers require
information about each person's test score and a judgement of the
sufficiency of the person's knowledge and skills. The judges identify
those persons who are minimally qualified or who were not qualified
and then characterize these groups' test scores.

The last category of methods discussed were the methods
based on judgments about a group of test takers. This method is
consistent with Kelley's (1979) method. Kelley's method requires a
reliable placement examination to be developed or selected, students
to be placed Into courses using some other tool, scores obtained on
the placement examination items that were Incorporated into the
final examination, and preliminary course grades obtained before the
examination scores are calculated into the official course grades.
Thus, the Judgments of the faculty who assign the preliminary course
grades are uncontaminated by the scores on the placement
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examination items. Various possible cutoff scores are then
determined based on:

1. Expected score for students whose performance In course
was just minimally satisfactory -- i.e., students with
preliminary grades of C-....
2. Score for which expected grade was just minimally
satisfactory -- i.e., C-....
3. Score for which percents of errors of students In each
academic performance category (Unsatisfactory, Satisfactory)
were most nearly equal.
4. Score for which overall percents of errors were most nearly
equal....
5. Score that would have cut of f.., approximately the same
number of students as were In the Unsatisfactory performance
group....
6. Score that would have maximized overall accuracy of
placement.... (Appenzellar & Kelley, 1983, p. 15).

Recommendations for selecting the cutoff score were based on the
reasonability of the recommended cutoff score, distribution of the
placement examination scores, course sequence, and departmental and
Institutional goals.

One problem with the methods discussed by Livingston and
Zleky is that the different methods have produced widely different
cutoff scores over various school subjects. Crocker and Algina
(1986) provided an extensive review of these standard setting
comparison studies. It was clear from their review that no single
method can be consistently preferred in all situations. In response to
this finding, Crocker and Algina offered advice for standard setting:
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1. Question whether there is a legitimate need for establishing
a performance standard for interpretation of the test scores In
question.
2. Identify the likely threats to validity of the Inferences that
are to be made from the test scores.
3. Use two or more different approaches to standard setting
and multiple samples of judges,
4. Examine empirical evidence of how a typical sample of
examinees perform on the test and use this information In
evaluating the consequences of setting a particular standard
(Crocker and Algina, 1986, pp. 419-420).

Placement Literature Summary

The literature for general placement supports the theoretical
rationale of the placement systems recommended by Cronbach and
Gleser (1957), Hills (1 971 ), WillIngham (1 974), Aleamoni (1 979), and
Kelley (1979). The rationale used Gagn6's (1970) theory of learning
and decision theory requiring that placement goals and objectives be
developed, a placement test be constructed, that a cutoff score be
selected, and that techniques for assessing the placement system's
effectiveness and for maintaining the system be developed. Empirical
evidence was cited that suggested that several methods be used to
gain a consensus to determine cutoff scores because no single method
appears to give the best score in all situations.

Whereas Willingham's model focused exclusively on
prerequisite knowledge, based on Gagn6's theories, other theories
describe learning from different points of view. Recent work In the
theory of school learning has developed alternatives to describe the
learning process In terms of the cognitions students should acquire to
Improve transfer to unfamiliar situations. The next section provides
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an overview of this literature used to form an alternative theoretical
basis of the placement problem.

Cognitive Learning Theories

Cognitive learning theories may provide the rationale for an
alternative college mathematics placement model. A general
overview of several modern cognitive theories Is provided, followed
by specific aspects of Skemp's theory of intelligent learning and
Wilson's Model of Mathematical Achievement as they apply to college
mathematics placement.

Overview of Cognitive Theories

Silver (1987) reviewed much of the work in cognitive theory as
It applies to mathematics. He characterized modern cognitive
theories as those based on understanding of memory and Information
processing. In terms of memory content, most theories differentiate
between "knowing that" and "knowing how". Certain cognitive science
theories speak of a semantic memory that Is thought to consist of
concepts and relations among concepts; propositions are considered
linked In memory by the associations of concepts. Other cognitive
theories hold that propositions are connected In memory with whole
structures representing concept relations.

Some theories involve the architecture of memory. Most
theorists hypothesize that there are three kinds of memory registers:
a sensory buffer, a short-term (or working) memory, and a long-term
(or permanent) memory. The sensory buffer essentially receives and
encodes input from the environment. Short-term memory temporarily
holds and actively manipulates Information. Silver (1987) reports
that the short-term memory can hold only six or seven Items, while
long-term memory does not seem to have any storage capacity limit.
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The mental activity that manipulates and controls information
from the three registers is called "information processingo. The
advantage of efficient information processing is to reduce the
cognitive strain in terms of the limits of the snort-term memory
capacity. In terms of novel problem-solving, Silver noted that,

Students' problem-solving abilities might improve greatly if
they could use working memory more efficiently, that is, use
automatic processing for the more routine elements of an
activity, and thus make resources available for the controlled
processing of the novel aspects of solving the assigned
problems (Silver, 1987, p. 40).

Effective Information processing In mathematical problem
solving involves the ability to retrieve information from long-term
memory through the efficient structure of relevant knowledge. The
structure of knowledge has been pursued using the schema model of
knowledge. Rumelhart and Ortony (1977) defined schema to be a
cognitive data structure which represents concepts and their
interrelationships with other schema. Schemas are thought to
consist of ,ariables that are embedded In other schemas with varying
levels of abstractioo. To Rumelhart and Ortony, schema are more than
simple definitions of concepts; they represent knowledge, "the basic
building blocks of the human information processing system"
(Rumelhart & Ortony, 1977, p. 1 11 ). Memory is composed of a set of
schemas "Interconnected and cross-referenced" with schemas
performing at least four functions: the comprehension of sensory
information, the storage of the information into memory, the
retrieval of the information from long-term memory, and the making
of inferences (Schallert, 1982).

Important to the present study, Silver stated that schema
theory provides a good explanation of why students may have
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difficulty solving problems which are not precisely those given by the
textbook. He claimed that, "Locked into a particular approach, the
student lacks the flexibility to adapt to new circumstances" (Silver,
1987, p. 48). Silver further noted that an "extensive" knowledge of
mathematics was not a sufficient condition for successful problem
solving; problem solving also requires a variety of "meta-cognitive"
skills. Meta-cognition refers to the process whereby a student
monitors, assesses, and adapts his or her current information
processing activity.

In terms of learning, both Silver and Schallert identified two
common principles: (a) that expertise develops with repeated
experience with a variety of examples and (b) that learning is
essentially a constructive activity performed by the student. Thus,
schemas grow, new interrelationships develop, and new schemas
come into existence only when students construct relationships
between new Information and their existing schemas. An instructor
cannot provide the schemas ready made; students must use their own
existing elements of knowledge to construct new concepts,
structures, and skills.

This section presented a separate view of the concepts of
Informatio- processing, constructivism, and schema In terms of
learning. Skemp (1979) has developed a theory of learning which
blends these Individual theories into an Integrated theory.

SkemD's Theory of Intelligent Learning

Skemp (1979) developed a comprehensive cognitive theory of
learning and recently adapted this theory to explain learning In
mathematics (Skemp, 1987). Skemp's theory Integrates schema
theory, Information processing theory, and constructivism. This
review, however, highlights the various aspects of his theory that
might form the foundation for a cognitive model for college
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mathematics placement. Duran (1985) provided a comprehensive
summary of Skemp's theory.

Skemp began by noting that much of human behavior is goal
directed and that there seem to exist two cognitive systems (director
systems) that systematically direct actions to achieve goal states. A
director system requires (a) a sensor to take in Information and
represent It Internally, (b) an internal representation of the goal
state, (c) a comparator to compare the present state to the goal
state, and (d) a plan of action of moving the operand from the present
state to the goal state (Skemp, 1987).

Learning Is considered a goal directed activity where the
director systems change and allow for better functioning. Skemp
calls Intelligence "a kind of learning that results In the ability to
achieve goal states In a wide variety of conditions, and by a wide
variety of plans" (Skemp, 1987, p. 107). Better functioning Implies
Increasing the domain of the director system, improving the accuracy
of conceptual structures (called schemas), Increasing the
completeness of the schemas, and Improving the skill of actualizing
the plans (Skemp, 1979).

Skemp views learning as the building, testing, and maintaining
of conceptual structures. Skemp described two director systems that
perform separate parts of these activities. The delta-one director
system operates on environmental Input, while the delta-two director
system operates on the delta-one director system. The goal of delta-
two is to Improve the functioning of delta-one. An Important goal of
delta-two is to construct schema. Delta-two constructs schema In
order for delta-one to function better within the environment and
derive plans from the schema so that delta-one will be able to
operate effectively In more varied circumstances. This Is what
Skemp terms "Intelligent learning" (Skemp, 1979, p. 85).

According to Skemp, schemas have several characteristics that
are useful in describing learning in mathematics:
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(i) A schema is a structure of connected concepts .... A schema
In its general form contains many levels of abstraction,
concepts with Interiority, and represents possible states
(conceivable states) as well as actual states.

Factors important for effectiveness of schema include:

(ii) Relevance of content to the task In hand.
(iii) The extent of its domain.
(iv) The accuracy with which It represents actuality.
(v) The completeness with which it represents actuality
within this domain.
(v) The quality of organization which makes It possible to
use concepts of lower or higher order as required, and to
interchange concepts and schemas.
(vii) By a high-order schema, we mean one containing high-
order concepts.
(viii) The strength of the connections.
(ix) The quality of the connections, whether associative
[con'-epts memorized without connections] or conceptual
[connected to appropriate schema].
(x) The content of ready-to-hand plans which remain
Integrated with the parent schema.
(xi) Penetration - the degree to which It can function in high-
noise conditions.
(xil) Assimilatory power - the degree to which It can
assimilate new experience.
(xI) Assimilatory power relative to other schemas . .

(Skemp, 1979, pp. 190- 19 ).
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Skemp noted two types of understanding in school mathematics:
instrumental and relational. Instrumental understanding is defined to
be memorized rules without meaning -- for example, in differential
calculus, memorized rules of differentiation without understanding
their relationship to the definition of the derivative. Relational
understanding means knowing both the how and why in mathematics;
this could mean knowing the relationship between the rules for anti-
differentiation and limit theory. In the first case, there are few
conceptual links; most of the links are associative, which virtlially
isolates the concept. Skemp (1987) reported that this kind of
understanding has been shown to be effective in the short term but is
disadvantageous in the long term: (a) instrumentally learned
mathematics is usually easier to understand; (b) the rewards are
more immediate, and more apparent; and (c) one can often get the
right answer more quickly and reliably when problems are proposed
exactly as learned. Skemp (1979) further suggested that the
advantages of relational understanding far outweigh those for
instrumental understanding. The advantages of relational
understanding are: (a) it is more adaptable to new tasks; (b) it is
easier to remember; (c) it may be a goal in itself; and (d) relational
schemas are organic, in that they grow from within, without direct
instruction.

So, relational mathematics knowledge Is more adaptable to
growth and can be used In novel settings more effectively and
appropriately than can Instrumental understanding. Thus, Skemp's
theory predicts that students with relational schemas will be more
likely to succeed in learning subsequent mathematics than students
with instrumental schemas.

-kemp delineated the problems that the Instrumental learner
will eventually face:
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The problem here Is that a bright and willing child can
memorize so many of the processes of elementary mathematics
so well that it is difficult to distinguish it from learning based
on comprehension. Sooner or later, however, this must come to
grief, for two reasons. The first is that as mathematics
becomes more advanced and more complex, the number of
different routines to be memorized imposes an impossible
burden on the memory. Second, a routine only works for a
limited range of problems and cannot be adapted by the learner
to other problems, apparently different but based on the same
mathematical ideas (Skemp, 1987, p.94).

Hence, students with relational prerequisite mathematical
schemas are more likely to succeed than those with instrumental
schemas. One significant problem arises In trying to apply this to the
placement problem, especially If placement tests are constructed
according to Braswell's criteria (cited In MAA, 1983), In general,
questions that are nonroutine or insightful In nature are not
appropriate for use on placement tests" (p. 6). Thus, according to
Braswell's approach the entire test should be composed of the type of
items which would favor students with Instrumental mathematical
schemas! Clearly, a methodology must be developed to assess the
degree of students' relational schemas to be consistent with Skemp's
theories.

Greeno (1978) suggested three criteria for evaluating the
degree of understanding within a semantic network: (1) Internal
coherence, or completeness, of the representation; (2) connectedness
of the Information to other schemas; and (3) correspondence, or
accuracy, of the representation.

Resnick and Ford claimed that the best way to assess Internal
integration is by measuring the access time and noting the pattern in
which a number of items are related when answering a question, e.g.,
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"Tell me everything you know about Newton's law of moments"
(Resnick & Ford, 1981, p.207). Resnick and Ford further suggested
that diagnostic interviews should be used to assess the degree of
connectedness. They also recommended assessing the correspondence
of representation by the association method, where "a person is given
a word drawn from the subject matter domain and is asked to state as
many other words or concepts associated with the target word as
possible. Once a list of associated words is collected for each target
word, it Is possible to compare the lists [the student's and an
expert's] for degree of overlap" (Resnick and Ford, p. 208). Each of
these situations seem impractical In the typical college placement
setting. While Skemp (1987) promoted using diagnostic Interviews to
assess the quality of schemas, he also suggested an alternative
assessment method: Measuring the ability to solve novel problems.
This method Is based on the assumption that relationally understood
schemas are more adaptable to unfamiliar situations.

He agreed with Backhouse who stated that,

We are unable to observe our pupils' feelings and schemas
directly, and look for confirmatory behaviour. As evidence that
A understands X [relationally], we accept the fact that A
applies X In situations different (in greater or less degree)
from that in which it was learned (cited in Skemp, 1987,
pp. 166).

Skemp's theory, as It applies to mathematics placement, may
be summarized with the following principles: (a) students must
possess the necessary prerequisite relational knowledge to enjoy
long-term success In learning mathematics, (b) students with
relational schemas are more likely to succeed In learning subsequent
mathematics than students with Instrumental schemas, and (c) the
ability to apply prerequisite knowledge In novel settings
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distinguishes students with relational or instrumental schemas.
Thus, Skemp's theory supplies a basic rationale for

understanding the placement problem by defining a set of behaviors
that may be used to infer the cognitive conditions in students and
linking them to the successfulness in learning subsequent
mathematics. This rationale can be used to develop a placement test
prepared from a conceptual analysis of the prerequisite course.
Placement test items should require students to apply prerequisite
knowledge in novel settings In order to measure the degree of
connectedness and internal integration of the prerequisite schemas.
Other items also should be included to assess the degree to which the
prerequisite knowledge is possessed by the learner.

This investigator argues that two subscales, one composed of
novel Items and the other composed of items to assess completeness
of the prerequisite schemas, can be used to predict the success of
students in learning subsequent mathematics. Scores on this type of
examination should predict success. In other words, the examination
Should be useful for placing students into mathematics sequences.

Skemp's theory of learning suggests the characteristics of a
valid placement test, but his theory does not supply the specific
technology that can be used to write the necessary test items.
Skemp's theory does not give operational definitions for a novel
problem or a method for distinguishing between novel and routine
problems. Wilson's (1971) Model of Mathematics Achievement
provides a framework for making these decisions.

Wilson's Model of Mathematics Achievement

Wilson (1971) supplied a detailed analysis of evaluation of
mathematics learning. His model is a two-way content-by-behavior
(cognitive and affective) taxonomy and represents an expanded
version of the model of mathematical achievement used in the
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National Longitudinal Study of Mathematics Achievement (NLSMA)
(Romberg & Wilson, 1969). The Wilson model is consistent with the
model established by Avital and Shettleworth (1968) and represents a
synthesis from Bloom's (1956) taxonomy of educational objectives.

The four basic levels of cognitive mathematics behavior In the
model reflect the cognitive complexity generally required In
secondary school mathematics. These levels are computation,
comprehension, application, and analysis. Wilson supplied an example
of his model for secondary school mathematics, grades 7 through 12.
Within that context, he provided finer distinctions for each basic
level of cognitive behavior, as well as affective behavior. He
maintained that the basic levels of cognitive behavior are both
hierarchical and ordered. The content dimensions Wilson used
represented the major content divisions, with additional subdivisions
within each major area.

The primary importance of Wilson's model to the present study
is his fourth level of cognitive behavior. Skemp and Backhouse
advised that it Is possible to assess relational understanding with
items that require students to apply schema In novel settings. In
terms of the Wilson model this means that placement test Items
should be written for specific college mathematics content areas at
the analysis level of cognitive behavior, as that level primarily
represents non-routine problem-solving. Wilson provided the
necessary operational contrast between analysis and non-analysis
level Items. He observed that In all cases analysis level items differ
from others In that they Involve "... a degree of transfer to a context
in which there has been no practice.... the student Is given a problem
situation for which an algorithmic solution Is not available to him"
(Wilson, 1971, p. 662).

In Skemp's terms the possession of a relational schema for a
particular mathematical concept Implies that the learner possesses
the capability to generate not only the definition of the concept but
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also various representations of the concept and its connections to
other concepts with a high degree of fluency. On the other hand,
Wilson's classification of a test item at the analysis level of
cognitive behavior implies that the correct response to the item Is
not available by recall from memory but Instead requires a new
organization of related concepts. One infers that such a
reorganization is possible only If the essential concepts and
connections are either possessed by or can be generated by the
student.

Wilson's model augments the theoretical position established
by Skemp by providing a content-by-cognitive behavior framework to
classify various levels of mathematical behaviors which result from
a conceptual analysis of the prerequisite course, and by providing the
operational definitions for constructing or Identifying novel problems
that may be used to assess these mathematical behaviors. Together
Skemp's theory and Wilson's model provide the major elements of a
cognitive model for placement within college mathematics.

The Cognitive Model of College Mathematics Placement

Question I, presented In the Introduction, asked If a cognitive
model for college mathematics placement could be developed from
Skemp's learning theories and Wilson's model of mathematics
achievement. This section Is devoted to answering this question by
describing such a model and discussing Ideal and alternative methods
for validating placement examinations based on the model.

The model assumes that the placement problem Is to maximize
the likelihood of success of students within a college mathematics
sequence Involving a prerequisite and a criterion course, I.e., the
vertical placement problem. Students are most likely to succeed
when their prerequisite mathematical schemas (a) are well connected
with a high degree of Internal Integration, and (b) have a high degree
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of correspondence and completeness with the selected prerequisite
schemas necessary for success in the follow-on course. The degree
of the connectedness and internal integration of the students'
prerequisite mathematical schemas may be measured with placement
test items written at the analysis level of cognitive behavior. The
degree of correspondence with selected prerequisite schemas may be
assessed with other items written at the computation,
comprehension, and application levels of cognitive behavior.

A placement test developed using the model should contain two
subscales. One subscale should be composed of analysis level items
relating the major content divisions represented in the prerequisite
course. These items should not be overly difficult or tricky; rather
they should require flexible and fluid mathematical thought to
identify relational schemas. The other subscale should be composed
of non-analysis level items thoroughly covering the variety of the
content divisions of the prerequisite course identified as necessary
for success in the criterion course; the focus of this subscale is on
the completeness of the students' schemas. A weighted composite of
the students' scores on these two subscales may be used to identify
the students most likely to succeed in the criterion course; these
students should be placed directly into the criterion course. Those
students who are identified as unlikely to succeed in the criterion
course should be placed into the prerequisite course.

Ideally, the composite score which differentiates the
potentially successful and unsuccessful students, should be
determined through the use of TTI techniques. Initial estimation of
the appropriate cutoff score requires that placement subscale scores
be obtained from the entering freshman students before they are
placed into any mathematics courses. The students should then be
randomly placed into the prerequisite and criterion courses and
allowed to complete the sequence. TTI techniques should be applied
to the students' final grades in the criterion course, placement
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sequence, and placement subscales scores to (a) validate that
differential prediction exists, and (b) to estimate the weighted
composite score that will indicate most accurately the students'
likelihood of success in the criterion mathematics course. The
results should be cross-validated, preferably with a different group
of individuals.

Practically, the TTI technique described above can rarely be
used since the collegiate placement setting usually does not allow for
randomly placing students Into courses. In this case course
placement should be performed as accurately as possible and
alternative methods for validating the prospective placement test
should be used. The content and construct validity of the placement
test become the major focus of concern. A high degree of agreement
among judges that the Items are representative of content problems
in the prerequisite course should Indicate that the subscales
adequately cover the content of the prerequisite course. The
construct validity should substantiate the composition of the
subscales In terms of analysis and non-analysis level Items. In
addition, the predictive and concurrent validity of the placement test
may also be Investigated. Predictive and concurrent validity
coefficients in the range of 0.40 -- 0.60 should be expected. Most
existing placement test procedures could be converted to the
Cognitive model placement procedure through the division of the
placement examination total score into its analysis and non-analysis
subscale components.

When a college Is unable to develop non-analysis subscales
which thoroughly cover the content of the prerequisite course; other
assessments of the completeness of the prerequisite schema may be
needed. In this situation a supplemental estimate of the two
measures may enhance the accuracy of the placement. The next
section reviews such measures.
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Placement Variables

The Cognitive Model for College Mathematics Placement
provides criteria to evaluate variables to be used to predict
successful placements within a college mathematics sequence.
Specifically required are prediction variables which (a) assess the
quality of students' prerequisite relational schemas and (b) assess
the completeness of the students' prerequisite schemas. This section
evaluates the variables commonly used in empirical placement
studies against these criteria.

EInl_ Grades

Final grades at the end of an instructional sequence are by far
the most common predicted or criterion variable used in placement
studies. Final grades are generally thought to reflect student
achievement in the course content; however, this may not always be
true, because final grades in college courses may be contaminated by
numerous other influences (Cronbach & Gleser, 1957; Hills, 1971;
McComb, 1987). McComb observed two major contaminants: (a)
grades may not represent achievement In the subject matter (e.g.,
grades also may reflect for attendance, extra credit work, class
participation, etc) and (b) grades may not be assigned consistently
across instructors or offerings (e.g., class participation may not be
assessed consistently, grading "on a curve", etc.).

Given these weaknesses it is apparent that alternatives should
be sought. One alternative that Willingham (1974) and Appenzellar
and Kelley (1983) suggested is an objectively scored, comprehensive
common final examination. Scores from this type of examination may
resist the inherent problems with final grades, although this measure
may have different threats to reliability and validity. These threats
may come from teaching effects (e.g., not all the syllabus was
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covered) or personnel effects (e.g., was feeling Ill the day of the
examination).

Placement Examinations

A locally or commercially developed placement test Is,
perhaps, the most common predictor variable In previous placement
studies. Such predictors have been Incorporated Into decision
theoretic models (Cronbach & Gleser, 1957; Hills, 1971; Willingham,
1974; McComb, 1987) as well as empirical prediction models
(Bingham, 1972; Bridgeman, 1980; Appenzellar & Kelley, 1983;
Eshenroder, 1987).

When TTI-based models are used to Investigate placement
procedures, It Is expected that the correlation between placement
test scores and final grades In the criterion course should be lower
for students In the long sequence than for students In the short
sequence when the prerequisite course Is operating effectively. This
means, presumably, that the students who did not Initially possess
the prerequisite capabilities, as measured by the placement tests,
acquired them In the prerequisite course. A low correlation here
indicates that, In the long sequence, the students' criterion
performances are less dependent on the level of achievement
represented by the placement examination scores. Medium to high
correlations between placement scores and final grades In the
criterion course for students In the long sequence are presumed to
Indicate that the prerequisite course was not very effective as a
preparatory course.

None of the placement tests used In the above mentioned
empirical studies were constructed according to the Cognitive model.
None of the studies described the cognitive structure of the test they
used. In fact, very little was reported concerning the development of
the tests besides stating the mathematics content they covered
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together with estimates of reliability. The studies based on decision
theory or on Willingham's model were more likely to report other
information related to the validity of the tests, while virtually all of
the studies reported the predictive validity of the tests.

A properly constructed placement examination is essential for
establishing a TTI between alternative sequences and for
implementing effective placement. Perhaps existing examinations
could be analyzed to form the necessary subscores consistent with
the Cognitive model. Locally developed examinations would be more
accessible to this analysis than commercially developed placement
tests, since commercial test developers tend to restrict the
necessary test item data for test security reasons.

Other Predictor Variables

Several other predictors are commonly used in empirical
placement studies. Results from a Mathematics Association of
America (MAA) Placement Test Program (PTP) questionnaire
(Cederberg & Harvey, 1987) showed that 85% of a sample of 84 PTP
subscribers reported using some measure other than a placement test
to perform their college mathematics placement. Measures of general
mathematics ability or mathematics achievement, nationally normed,
are frequently used. Two of these predictors are scores from The
College Board Scholastic Aptitude Test, Mathematical Score (SAT-M)
and the American College Testing Program Mathematics Score
(ACT-M) subtest. The SAT-M may function differently from the
ACT-M within the Cognitive model context because the SAT-M is not
closely tied to any specific college preparatory curriculum (Angoff,
1971). The ACT-M has traditionally been based on typical mid-
western high school curricula. Since the context of the test Item
affects Its cognitive classification, Items written without a
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particular curriculum in mind logically seem to enhance the degree of
novelty to the test takers.

While It Is senseless to discuss measuring interrelationships
between concepts If the concepts have not been learned, It Is assumed
that most college preparatory curricula Include the basic concepts
measured by the SAT-M. Even though the students may not be
"schooled" on the solution of specific item types, the students should
be able to solve the problems if their schemas are flexible and
adaptable. A serious difficulty with this line of thought Is that
without knowing the Items and their cognitive classifications, It Is
not possible to determine the extent to which the scores contribute
to the assessment of the students' relational schemas. Indeed, the
SAT-M or ACT-M tests scores should be Judged as Inappropriate to be
used as measures of the extent of students' relational schemas for
precalculus without their associated cognitive subscale scores.

SAT-M and ACT-M examination scores may also be evaluated in
terms of their contributions to the assessment of the completeness
of the prerequisite schemas. Both examinations seem to provide
reliable, although general, measures of certain prerequisite schemas
required for freshmen entering college mathematics sequence (Angoff
& Dyer, 1971). The validity of these assumptions may be reflected In
the correlations between the SAT-M scores and the final end-of-first
semester mathematics grades In the criterion course. Historically,
these correlations range between .40 and .70 for large samples.

Other prerequisite mathematical schemas may be necessary for
success In the calculus that are not assessed by the SAT-M or the
ACT-M. For example, Skemp (1987) maintained that symbolic and
logical schemas are also often needed. These schemas relate to the
ability to connect mathematical symbolism and notation with
relevant mathematical ideas, and to cope with mathematical rigor. It
is conceivable that the possession of these and other schemas may be
required for success in the criterion course and yet are not addressed
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by the objectives of the prerequisite course. If these schemas are not
present and not taught in the prerequisite course, then neither
sequence will be effective. Therefore, it is possible for a student to
possess some of the prerequisite schemas, supported by the
prerequisite course, and yet still not be ensured of success In the
criterion course. This situation may be alleviated In at least three
ways by providing instruction of these schemas In: (a) the
prerequisite course; (b) the criterion course; or (c) in another
concurrent course.

Other writers have suggested that many noncognitive schemas
(e.g., persistence, study habits, favorite subject, motivation) and
individual characteristics (e.g., age, sex, date of admission) relate to
the success In many college mathematics courses (Tinto, 1982;
Owens, 1987; Eshenroder, 1987). While the proposed model of
placement has focused on cognitive factors, theories upon which It is
based are not so restricted; the model could be expanded to include
"affective" factors as well. However, It seems that while affective
factors previously have been shown to be statistically related to
success, it has been difficult to explain or attribute causality to the
relationship. Not enough Is known about these variables and criterion
relationships for them to be included in the Cognitive model at this
time.

Another frequently used variable In placement studies is the
students' prior academic performance (Hunt, 1987; McKillip, 1966;
Morgan, 1970; Owens, 1986; Wick, 1965). Ahrens (1980) used several
such variables, Including high school background, as measured by the
number of credits taken in high school mathematics, and the course
recommendation from the student's advisor. Eshenroder (1987)
Investigated high school grade point average (GPA), number of
mathematics credit hours enrolled In the previous quarter, date of
latest mathematics course, grade in the last high school mathematics
course, years of high school mathematics, and the number of high
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school mathematics courses completed. The general rationale for
including these variables is that they were used in previous studies
with some degree of predictive success, that they were available, and
that they logically relate to the success of students in college
mathematics courses. However, according to the Cognitive model
few, if any, of these variables can be tied theoretically to the
prerequisite schemas of concern in the placement problem as
described so far. They may relate more to general affective or social
mathematics characteristics of students, so they will not be
considered further as variables for inclusion in the Cognitive model.

All variables considered for inclusions in a placement model
should be judged in terms of stability across time in large samples.
This researcher found that studies that have included cross-
validation of the predictors have used the Willingham model
(Bridgeman, 1980, and Appenzellar & Kelley, 1983) with mixed
results. Most other studies involved only one sample, oftentimes
using small numbers of observations. A tacit assumption of the
Cognitive model is that the analysis and non-analysis subscores
achieved on a properly constructed placement test are stable
predictors of student success.

Summary of PhilosoDhy for Selecting Placement Variables

The basic philosophy for selecting placement variables in this
research study was to Judge them in terms of the Cognitive Model for
College Mathematics Placement. The variables must have been able
either to assess the completeness or correspondence of the
prerequisite schemas for the criterion course, or to assess the
quantity and quality of the connections between the prerequisite
concepts necessary for the cultivation of the schemas in the criterion
course. Locally developed placement tests should be the best source
of these measures. These tests should provide subscores for both
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types of assessments when broken down into cognitive level
subscales, analysis and non-analysis level items. Additionally, SAT-
M and the ACT-M scores were argued to provide a reasonably thorough
measure of the completeness of some of the schemas necessary for
most calculus courses. Finally, placement variables should be further
validated for stability through cross-validation, using large samples.

Summary of Review of Previous Research

This chapter reviewed the major theoretical bases for
placement models--decision theory and Willingham's models.
Willingham's Vertical Placement Model was based on Gagne's theory
of instruction, which emphasized the necessity of students
possessing prerequisite knowledge to promote subsequent
mathematics learning. Skemp's learning theory also placed an
emphasis on prerequisite schemas, but he went on to state that
students who possessed many conceptual links between prerequisite
schemas were more likely to be successful in learning mathematics
than those who did not. Skemp further argued that novel problems
could assess the degree to which students' schemas were flexible and
adaptive. Wilson's Model of Mathematics Achievement developed a
content-by-cognitive behavior taxonomy to classify mathematics
achievement. His analysis level of cognitive behavior was shown to
be particularly useful to this research as this type of Items
corresponds to Skemp's novel problem.

The Cognitive Model for College Mathematics Placement was
proposed, based on a synthesis of Skemp's and Wilson's theories. The
major theoretical assumption of the model is that measures of the
degree of students' completeness of the prerequisite schemas, and the
degree of the adaptability and flexibility of their schemas, may be
used to predict their success in subsequent mathematics learning.
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The model also contained ideal and practical suggestions for
validating tests constructed or adapted using the Cognitive Model.

Also Included in this section was a review of the various
predictors of final grades that have been used in previous
mathematics placement and prediction studies. The variables
determined to be consistent with the Cognitive model were placement
test scores, classified by cognitive levels, and the SAT-M and ACT-M
scores. The SAT-M and ACT-M scores were assumed to estimate the
completeness and correspondence of the students' schemas with some
of the prerequisite schemas required by a differential calculus
course. Non-analysis Items on the placement tests also estimate the
completeness of prerequisite schemas. Thus, scores on analysis
Items on the placement tests, scores on the non-analysis Items on the
placement tests, and SAT or ACT mathematics scores should
demonstrate a TTI with long and short precalculus-calculus
sequences under appropriate sampling conditions.

Other noncognitive (affective and social) variables were not
considered in the present model; however, both Skemp's theory of
mathematics learning and Wilson's model contain noncognitive
elements. Therefore, the Cognitive Model for College Mathematics
Placement may be expanded to accommodate a wider collection of
variables for use In college mathematics placement at a later time.



CHAPTER III

METHODOLOGY

This chapter describes the design, procedures, subjects,
placement environment, and the limitations of the study. Prior to
this description, however, Is a list of operational definitions which
supplement those presented In Chapter I.

Definitions

The following operational definitions were used by this
investigator:

Academic Composite Index (ACI): A weighted average of the
prior academic record (PAR), ACT-E, ACT-M, ACT-N, ACT-S, SAT-M,
SAT-V scores used by USAFA for admissions and placement. The ACI
ranges from 2,000 to 4,000.

Hand-placed Cadets: Cadets who were actually placed In a course
sequence different than that specified by a placement model.

Hypothetical placement: The conjectured placement of students
into course sequences by a placement procedure other than what was
actually used.

Generalized E-test: A statistical test that compares the fit of two
regression equations to the same data. In this research, the
generalized E-tests used the following formula:

E* a(RSS1 - RSSf)/(DFI - DFf) (1).
RSSf/DFf

42
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RSSf and DFf are the residual sum of squares and the degrees of
freedom from the Cognitive model, and RSSi and DFI are the residual
sum of squares and the degrees of freedom from an alternative
placement model. The calculated E* value was compared to the
E(oi = O.05,DFi - DFf,DFf) tabled value to test for significance. An
observed E* value greater than the tabled E value was interpreted as
indicating that the Cognitive prediction equation explains more of the
variance In the data than the alternative prediction equation.

Kuder-Richardson Formula-20 (KR-20): A measure of reliability
(internal consistency). The formula is:

KR-20 I - )

where k is the number of items on the test, pi is the proportion of
students who answered the ith item correct (assuming right-wrong
scoring), and 6 is the total test standard deviation.

Prior Academic Record (PAR): A score based on either the cadets'
percentile rank In their high school graduation classes, adjusted for
the percentage of graduates who continue on to college, or an
equivalent score based on their high school grade point averages,
adjusted for honors or Advanced Placement courses. The PAR ranges
from 800 to 200.

Shrinkage: An Index used to cross-validate prediction equations.
Shrinkage values are measures of the stability of the accuracy of the
prediction equations over time.
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USAFA and DFMS Background Information

The U. S. Air Force Academy is a military service academy
awarding the standard bachelor of science degree recognized by the
North Central Association of Colleges and Schools. The mission of the
Academy is to prepare the future leaders of the Air Force. The
program at USAFA includes military studies, aviation experience,
military training, physical fitness training, and personal standards
training as well as academics. Upon graduation, the students are
commissioned as junior officers in one of the uniformed services.
USAFA faculty are primarily active duty military officers who serve
as academic instructors and officer role models.

The Department of Mathematical Sciences (DFMS) supports the
mission at the Academy through providing instruction for a common
core of mathematics courses which all cadets must successfully
complete. DFMS also provides other upper division mathematics
service courses for specific majors as well as providing courses for
its own mathematics and operations research majors. The DFMS
faculty is composed of approximately 52 officers, all of whom have
earned at least a Masters of Science degree in mathematics or some
technically related field. Approximately 20% of the faculty have also
earned PhD or EdD degrees.

Two course sequences were studied with historical data
obtained In the fall semesters of 1985, 1986, and 1987 from the
cadets In the classes that will graduate In the years 1989, 1990, and
1991. The long sequence was composed of two courses, precalculus
and calculus I (differential calculus). These two courses were
offered In each of the fall semesters of 1985 through 1987 with the
precalculus course considered as a prerequisite to calculus.
Precalculus was a one-half semester course which met every day and
covered college algebra and trigonometry. The course was offered
only In the first half of the first semester of the cadets' freshman
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year. The second course in the long sequence was a half-semester
calculus course which met every day and covered functions, conic
sections, limit theory, differentiation, and applications of
differentiation. This course was only offered in the second half of
the first semester of the cadets' freshman year.

The other sequence was identified as the short sequence
because It was composed of a single d'fferentlal calculus course.
This course was a full semester course offered in the first and
second semesters of the cadets' freshman year. The course used the
same textbook and covered the same content sections as the calculus
course in the long sequence.

All freshman core mathematics courses, Including precalculus
and calculus, were managed by one person, the division chief, who
supervised the course directors. The course directors were directly
responsible for their course materials, course Interface with the
other Inter- and intra-departmental courses, and course evaluation.
The course directors prepared the tests, syllabus, cadet and
instructor notes, and the course-wide plan for grading the tests.
They also supervised the team grading of the tests to ensure
consistent scoring. At the end of the course, they assigned grades to
the cadets on a course-wide basis. The cadets' grades In different
sections were computed strictly from the composite scores on the
common quizzes, common midterm examinations, and the common
final examination. Cadets' grades for a given course were comparable
between offerings as the division chief ensured consistency between
semesters within an academic year. Additionally, final grades were
not officially assigned until approved by the DFMS department
chairman and the Dean of the Faculty.

Minor adjustments were made In the syllabi, Instructors' and
cadets' notes, examinations, and grading policies for the Classes of
1989 through 1991. For example, a new textbook was selected for the
precalculus course for classes after 1989. The text was an updated
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edition of the text already being used, which caused slight changes in
the course but did not impact the precalculus placement tests for the
Classes of 1990 and 1991.

DFMS Placement Procedures

Soon after arriving at the Academy, cadets completed a battery
of mathematics placement examinations administered by DFMS
personnel. They were then placed Into either precalculus, Calculus I,
or some other core mathematics course as discussed below. Cadets
could challenge their placement. If the challenges were approved, the
cadets were put Into courses of their choice. The DFMS placement
officer evaluated the petitions and changed placements on a case-by-
case basis. The number of approved challenges were 41, 11, and 5 for
the Classes of 1989, 1990, and 1991 respectively.

All the placement data used In the study were obtained from
DFMS sources In the fall of 1988. Thus, the cadets had already taken
the placement examinations, had been placed Into their Initial
courses, and had received their final calculus grades. These three
classes of cadets were placed using one of two empirical placement
systems. The placement decisions for the cadets In the Classes of
1989 and 1990 were made according to DFMS Standard Operating
Procedure, SOP P-2 (see Appendix A). This operating procedure
described In detail the method for placing all of the freshmen cadets
Into the core mathematics sequence, Including precalculus and
calculus. The placement decision for precalculus and calculus was
based primarily on the algebra placement test total score; however,
other factors were also considered. These other factors were: (a) the
trigonometry and calculus placement tests total scores, (b) SAT-M or
ACT-M scores, (c) previous enrollment In equivalent courses, (d)
USAFA Preparatory School experiences, (e) ACI, and (f) SAT-V or ACT-
E scores. For certain ranges of the algebra placement test total
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score, "very positive" values for the other variables, or "something
negative", influenced borderline cases. This procedure will be
referred to as the SOP placement model.

The Class of 1991 was placed using the Computerized
Placement Model (Boudet, 1987). This model was an empirical
placement model based on linear discriminant function analysis and
was designed to place all freshman cadets throughout the entire core
mathematics sequence, not just the precalculus and calculus courses.
Different discriminant functions were used for placing USAFA
Preparatory School graduates and non-Preparatory School graduates.
In addition, non-Preparatory School graduate cadets who scored below
45% on the algebra placement test were automatically placed into
precalculus, while no USAFA Preparatory School graduate was
allowed to be placed into precalculus. The predictors for the non-
Preparatory School graduates who scored above 45% on the algebra
placement test, in the order of importance, were the: Calculus II
placement test score (CALC2), algebra placement test score (ALG),
Academic Composite Index (ACI), Calculus I placement test score
(CALC1), trigonometry placement test score (TRIG), and Calculus III
placement test score (CALC3). The variables used to place USAFA
Preparatory School graduates were essentially the same but were
found to be in a different order of importance. The trigonometry
placement test score was found to not be a significant predictor of
success for this last group.

Subjects

The study used admissions and mathematics placement data
from the freshman cadets of the United States Air Force Academy
(USAFA) of the classes that will graduate in the years 1989, 1990,
and 1991. These groups were called the Classes of 1989, 1990, and
1991 respectively. The backgrounds of these classes were
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remarkably similar in terms of the distributions of gender, ethnicity,
and many cognitive measures. The cadets' characteristics are
described In Table 2 by class. In general, the classes were
predominantly non-minority males with relatively high verbal and
mathematical capabilities.

Since the research focused on placement within the
precalculus-calculus sequences, not all freshman cadets were
involved in the study. The cadets involved in this study were those
who had placement examination scores, placement examination item
data, and who either were placed directly into calculus and received a
grade, or were placed first into precalculus and received a grade and
then subsequently completed calculus and received a grade. The
number of students in the study is given In Table 3.

Table 3
Number and Percentage of Cadets by Sequence and Class

Long Seauence Short Seguence Total

Yen n S n 
1989 121 8.8 461 33.5 582 42.3
1990 123 9.2 569 42.8 692 52.0
1991 185 13.7 557 41.3 742 55.0

Note. a represents the percentage of the class in this sequence.

Variables

The variables used In this study were obtained from the DFMS
cadet placement files, were constructed from DFMS mathematics
placement files, or were obtained by a validity questionnaire (see
Appendix B). These variables were the Academic Composite Index
(ACI), the equated SAT-M -- ACT-M scores (MATH), algebra placement
test score (ALG), algebra analysis subscale score (AL6A), algebra
non-analysis subscale score (ALGNA), trigonometry placement test
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Table 2
Entering Cadet Characteristics

1991920 199.L
CATEGORY x (n) x (n) x (n)
Entered
Men (1199) (1178) (1145)
Women (176) (152) (203)
Total (1375) (1330) (1348)
Minority
Total (196) (174) (202)
AUI
Men 3133 (1199) 3172 (1178) 3174 (1145)
Women 3169 (176) 3212 (152) 3218 (203)
Total 3137 (1375) 3177 (1330) 3181 (1348)
Mean ACT ENGLISH
Men 24.3 (627) 24.4 (585) 24.5 (548)
Women 25.4 (101) 25.1 (92) 25.2 (100)
Total 24.5 (728) 24.5 (677) 24.6 (648)
Mean ACT-M'
Men 29.7 (627) 29.6 (585) 29.5 (548)
Women 28.8 (101) 28.2 (92) 28.5 (100)
Total 29.6 (728) 29.4 (677) 29.3 (648)
Mean SAT-V
Men 572 (572) 575 (593) 579 (597)
Women 597 (75) 589 (60) 583 (103)
Total 575 (647) 576 (653) 579 (700)
Mean SAT-M
Men 658 (572) 663 (593) 668 (597)
Women 638 (75) 658 (60) 647 (103)
Total 656 (647) 663 (653) 665 (700)
PAR
Men 629 (1199) 645 (1178) 642 (1145)
Women 661 (176) 681 (152) 681 (203)
Total 633 (1375) 649 (1330) 648 (1348)
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score (TRIG), trigonometry analysis subscale score (TRIGA),
trigonometry non-analysis subscale score (TRIGNA), Calculus I
placement test score (CALC1), Calculus I placement test score
(CALC2), Calculus III placement test score (CALC3), and the final
grade in Calculus I (GRADE).

Dependent Variable

The final Calculus I grade (GRADE) was the dependent variable
In the prediction equations. As previously described, this variable
was relatively uncontaminated with Individual Instructor grading
biases, subjectively scored tests, Inconsistent syllabi across
sections, differences In textbooks, and differences in content and
structure of tests.

Independent Variables

The Independent variables of prime Interest In the study were
the algebra and trigonometry placement examinations scores covering
the content presented In the precalculus course. These tests, as well
as the other placement tests, were developed by DFMIS personnel at
USAFA The algebra placement test was a 40-item, five choice,
multiple-choice formatted test. The trigonometry placement test
was similarly formatted but contained 20 Items. The same forms of
these examinations were administered under similar conditions to all
cadets in the three year groups. The calculus placement
examinations, producing CALCI, CALC2, and CALC3, were similarly
formatted; however, mostly volunteers took these tests.

The two other Independent variables, ACI and MATH, were both
constructed from a variety of data. The variable ACI was constructed
by USAFA and was used both for admission to USAFA and for
placement In mathematics. The Index has been computed using the
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following three formulae since 1977. For cadets who took the SAT
examination:

ACI = 2.07*PAR + 1.0*SAT-V + 1.99*SAT-M - 48.
For cadets who took the ACT examination:

ACI = 2.02*PAR + I0.4*ACT-E + 37.1 *ACT-M + 7.67*ACT-S + 15.7*ACT-N - 188.
For USAFA Preparatory School graduates:

ACI = 688*(Preparatory School cumulative GPA) + 811.
The variable MATH was constructed for this study. Each cadet

In the study had a SAT-M or ACT-M score, but no person had both
scores. This Investigator previously argued that these two scores
measure the completeness of a part of the prerequisite precalculus
knowledge for a typical graduated high school senior. The scores
were equated using the equipercentile equating tables developed by
Langston and Watkins (1980). The converted ACT-M scores were
computed by taking the midpoint of the corresponding class of
equipercentile SAT-M scores. For example, the ACT-M score of 35
corresponded to the class of equipercentile SAT-M scores of 740 -
750, with 745 as Its midpoint. Thus, In this example, the converted
ACT-M score was 745. The converted ACT-M scores were placed into
the variable MATH along with the SAT-M scores.

Design

This study was exploratory and correlational, seeking to
develop and validate a cognitive model for college mathematics
placement and also to compare its effectiveness against other
theoretical and empirical placement models. These objectives
suggested the following design and hypotheses.
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Questions I and II Deslgn

I. Can a cognitive model for college mathematics placement be
developed from Skemp's theory of learning and Wilson's model
of mathematics achievement?

I1. Which predictor variables are logically consistent with such
a model for college mathematics placement?

The first two research questions raised in Chapter I were
answered by the logical analyses in Chapter II in the sections entitled
The Cognitive Model for College Mathematics Placement and
Placement Variables, respectively. The following pages describe the
design used to answer the last two research questions.

Question III Design

II1. Does the Cognitive Model for College Mathematics
Placement, using the predictor variables ilJertified In research
Question II, produce a valid placement procedure?

The design to answer the third research question involved
investigating the reliability and validity of the cognitive placement
subscales. The reliability of the subscales was analyzed using
measures of internal consistency. The study of the validity of the
cognitive subscales was accomplished by investigating their
construct, content, and predictive validity. Cross-validations of the
prediction equations were also performed. The details of the design
follow In the section entitled Question III Procedures.
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Question IV Design

IV. Does the Cognitive Model for College Mathematics
Placement produce more effective placement than either the
Willingham model, the SOP model, or the Computerized
Placement model currently being used by DFMS?

The design to answer the fourth research question involved two
methods for comparing the efficiency of different placement
procedures: (a) comparing the capability of the variables, logically
consistent with each procedure, to predict final differential calculus
course grade or course assignments, using a generalized E-test, and
(b) comparing the number of correct and incorrect placements, actual
or hypothetical, produced by each model.

The numbers of correct and incorrect placements for each pair
of competing placement models were analyzed using hit-and-miss
tables after a suitable hypothetical placement was performed. These
hypothetical placements were performed with a cutoff value of the
expected final calculus grade derived from data displayed in "Kelley
Tables". Kelley Tables present data to support selecting cutoff values
in accordance with the guidelines and procedures described by
Appenzellar and Kelley (1983).

Procedures

This section contains the details of the procedures used to
investigate research Questions I I I and IV. The research hypotheses in
the design section are elaborated and described in operational,
statistical forms. No procedures are described here for Questions I
and II, as they were already answered by the logical analyses !n
Chapter II In the sections entitled The Cognitive Model for College
Mathematics Placement and Placement Variables, respectively.



54

Question III Procedures

Content Validity of Cognitive Subscales

The content validities of the placement tests were
Investigated by having the current DFMS precalculus course director
and two precalculus instructors respond to a content validity
questionnaire (see Appendix B). The questionnaire contained five-
choice Likert scale items which required the Judges to classify each
of the placement test items as one that did not test a content topic in
the syllabus or was either a poor, adequate, good, or an excellent test
item of a content topic in the syllabus. These responses were coded
as I through 5 respectively. The subtest was considered valid If the
total average coded value of all items was at least 2.5 and the
average percentage of agreement among the judges for all Items was
at least 67%.

Construct Validity of Cognitive Subscales

A questionnaire, Appendix B, was developed in which each
placement test Item was classified according to Wilson's (1971)
taxonomy. Seven Judges were used; two were mathematics education
faculty members at a leading university In Texas, two were faculty
members at central Texas high schools who had earnea doctorate
degrees In mathematics education, and three were precalculus
Instructors in the Department of Mathematical Sciences at USAFA
The Judgments of the mathematics education specialists were given
more weight In the process of combining the Judgments to categorize
the items. Thus, an Item was categorized as an analysis Item If two
out of the four mathematics education specialists Judged It to be an
analysis Item, or If any group of judges unanimously categorized It as



55

an analysis item. Two subscales for each of the algebra and
trigonometry placement tests were then established such that one
subscale contained only analysis items and the other subscale
contained only the non-analysis (computation, comprehension, and
application) Items.

The subscales were used to form two target vectors. One
vector represented the lower levels of cognitive behavior specified by
the combined classification of each item on a placement test; the
value of each element of this vector was ._ if the item was nU an
analysis item and Q if the item was an analysis item. The other
vector was the complement of the previous vector in that the
elements of the vector had a value of Q if the item was = an
analysis item and the value of I if the item wa an analysis item.
These vectors composed the target matrix, Hnx2.

Confirmatory factor analysis was then used to assess how well
the data fit the theoretical factor pattern. Each of he different
placement subscales' item response data from cadets in the study
was each factor analyzed using the principal components factor
analysis procedure of the SAS (1985) statistics package. The
resulting two factor matrix, Fnx2, was obliquely rotated using a
Procrustes rotation to target technique. The resulting matrix product
of the Procrustes transformation matrix, T2, and Fnx2 produced the
least squares fit, H*nx2 = Fnx2 T2x2 with Hnx2. A correlation
coefficient statistically different from zero was interpreted as
evidence of the construct validity of the subscales. The hypothesis
tested was:

Statistical hypotheses H3. 1: The Pearson product-moment correlation
coefficients between H*nx2 and Hnx2 are zero.
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Reliability of Cognitive Subscales

The reliability of the placement subscales was Investigated
with KR-20 reliability coefficients computed using the reliability
procedure In SPSS-X (1985) . The reliability coefficients for
associated examinations were compared across the Classes of 1989,
1990, and 1991 test forms using a test described by Snedecor and
Cochran (1969) and attributed to Fisher (1921). Fisher suggested that
two correlations can be compared from computing the difference
between their associated z* values. Thus, in this research the
pairwise differences of z* values were analyzed for statistical
significance. Bonferroni's method for controlling Type I error was
used because of the number of comparisons performed. Thus, the
following hypotheses were tested:

Statistical hypothesis H3.2.1: The reliability coefficients of the
algebra analysis subscales are not pairwise different for the Classes
of 1989, 1990, and 1991.

Statistical hypothesis H3.2.2: The reliability coefficients of the
algebra non-analysis subscales are not pairwise different for the
Classes of 1989, 1990, and 199 1.

Statistical hypothesis H3.2.3: The reliability coefficients of the
trigonometry analysis subscales are not pairwise different for the
Classes of 1989, 1990, and 199 1.

Statistical hypothesis H3.2.4 The reliability coefficients of the
trigonometry non-analysis subscales are not pairwise different for
the Classes of 1989, 1990, and 199 1.
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Predictive Validity of Cognitive Variables

The predictive validity of the cognitive variables Identified In
Question II was Investigated In regards to predicting the final
calculus grades. This was accomplished by regressing the final
calculus grades (GRADE) on the algebra analysis (ALGA) and non-
analysis (ALGNA) subscores, the trigonometry analysis (TRIGA) and
non-analysis (TRIGNA) subscores, and the equated SAT-M -- ACT-M
(MATH) scores. An E-test and multiple 1-tests were used to Identify
statistically significant predictors. Hence, the following two
hypotheses were tested:

Statistical hypothesis H3.3. 1: Using the regression equation:
GRADE = PO + P IALGA + P2ALGNA + p3TR + p4TRIGMA + pSMATH +e (2)
the parameters Pl, P2, P3, P4, and P5 are all simultaneously equal to
zero.

Statistical hypothesis H3.3.2: If H3.3.1 is rejected, then some of the

parameters p 1, P2 , P 4, and PS in Equation 2 are equal to zero.

Cross-Validation of Cognitlve model.

The prediction equations for the Classes of 1989, 1990, and
1991 were also cross-validated. The cross-validations were
performed by evaluating the shrinkage of the correlation coefficients
from the prediction equations for the Classes of 1989, 1990, and
1991. Specifically, correlation coefficients were obtained by the
prediction equation obtained from the Class of 1989 data to predict
the grades obtained by the Classes of 1990 and 1991, as well as by
using the 1990 prediction equation to predict the 1991 grades. The
cross-validation shrinkage values were computed using the following
formula: shrinkage - Ryy - Rxy,
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where Ryy' = the maximum possible multiple correlation coefficient
between the later year's predicted and observed GRADE values and
RXy - product-moment correlation coefficient between the observed
values of GRADE for the later year and the predicted values of GRADE
using a previous year's prediction model. Shrinkage values less than
0.10 were interpreted as indicating relatively stable accuracies of
prediction.

Question IV Procedures

Two methods for comparing placement procedures were used,
(a) comparing the capability of the variables, logically consistent
with each placement model, to predict final differential calculus
course grade or course assignments; and (b) comparing the number of
correct and Incorrect placements, actual or hypothetical, produced by
each model.

The first method used the residual sum of squares (RSSf ) and
the degrees of freedom (DFf) from Equation 2, and the residual sum of
squares (RS5i) and the degrees of freedom (DFi) from an alternative
placement model to calculate an observed E* value. The E* value was
then compared to the E(u - 0.05,DFI - DFfDFf) tabled value to test for
statistical significance of an Improved accuracy of prediction by
Equation 2.

The second method used hit-and-miss tables to compare the
models. Table 4 was used to define hits and misses on the basis of
the relationship between the actual and hypothetical placements and
the implications with regards to the correctness of the conjectured
placements. Recall that the short sequence refers to placement
directly Into differential calculus and the long sequence refers to the
precalculus-calculus course sequence. A satisfactory grade (S) Is one
that Is at least a C- (grade 2 2.00); an unsatisfactory grade (U) Is one
that Is less than a C- (grade < 2.00). The number of hits for the
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Cognitive and Willingham models were found using the guidelines
established In Table 4, that Is the sum of the number of cadets in the
categories denoted as correct. The number of hits for the empirical
models were found by summing the number of cadets who were placed
Into the long sequence and were unsuccessful and the number of
cadets who were placed Into the short sequence and were successful.

The conditions where the correctness of the hypothetical
placement Is unknown occur because It was Impossible to determine
If students In this hypothetical placement category would have earned
satisfactory or unsatisfactory grades if placed directly into the other
sequence since the students were not actually placed In the other
sequence. For example, suppose that the placement model being
Investigated suggests that a student should have been placed In the
short sequence (calculus), but that the placement model In use that
year actually placed the student In the long sequence (precalculus).
Further suppose that the student subsequently made a satisfactory
grade In calculus. One cannot determine how the student would have
performed in calculus had the student been placed directly into that
course.

Table 4
General Hit-and-Miss Table Interpretation

Actual Placement
Hypothetical Long Sequence Short Sequence

Placement Performance Performance
us- Sb  U S

Long Sequence CorrectO Unknown Correct Incorrect
Short Sequence Incorrect Unknown Incorrect Correct

Note. 0 Unsatisfactory observed grade In calculus.
b Satisfactory observed grade In calculus. c Correctness of
hypothetical placement.
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The comparison of the hit-and-miss tables produced from the
competing models were performed. The model with the largest
percentage of hits was the more efficient model.

Comoaring the Cognitive and Willingham Models

Willingham models were constructed for all three classes and
validated. Predictive equations regressing GRADE on ALG and TRIG
were developed for each class. The general form of these models was:

GRADE = PO + PIALG + P2TRI6 + c (3).

Validating Willingham models.

The Willingham models were validated using evidence from
content and predictive validations and also cross-validated across
the three classes. Finally, the Internal consistency of the placement
tests was analyzed across all three years. The procedures for the
content and predictive validation, cross-validation, and reliability
were the same that were used for the Cognitive model. Recall that
shrinkage values of less than 0.10 were Interpreted as Indicating
relative stability of prediction across the classes. The appropriate
statistical hypotheses are listed below.

Statistical hypothesis H4.1.1: The reliability coefficients of the
algebra placement tests are not pairwise different for the Classes of
1989, 1990, and 1991.

Statistical hypothesis H4.1.2: The reliability coefficients of the
trigonometry placement tests are not pairwise different for the
Classes of 1989, 1990, and 1991.
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Statistical hypothesis H42. 1: The parameters P I and 02 of Equation 3
are both simultaneously equal to zero.

Statistical hypothesis H4.2.2: If H4.2. 1 is rejected, then some of the
parameters p I and P2 In Equation 3 are equal to zero.

Cognitive and Willingham models hit-and-miss tables

The hit-and-miss tables produced by the Cognitive and
Willingham models were constructed after cutoff scores were
Identified and the classes were hypothetically placed. The cutoff
scores and hypothetical placements were accomplished using the
procedures of Appenzellar and Kelley (1983).

These methods required six potential cutoff Composite Scores
to be developed:

1. The Expected Composite Score for those students with a
Final Course Grade of 2.00.
2. The Composite Score for those students with an Expected
Final Course Grade of 2.00.
3. The Composite Score for which the percentages of errors of
students In each academic performance category (Satisfactory
or Unsatisfactory), were most nearly equal.
4. The Composite Score for which the overall percentages of
errors were most nearly equal.
5. The Composite Score that would have cut off, or held back,
approximately the same number of students as were In the
Unsatisfactory performance category.
6. The Composite Score that would have maximized the overall
accuracy of placement.
The first guideline score value was obtained from regressing

the Composite Scores obtained from regression Equation 2 for the
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Cognitive model, or Equation 3 for the Willingham model, on the
observed Final Calculus Grades. This model may be written;

Composite Score = O * IPIGRADE + £ (4).
The desired guideline value was obtained by substituting GRADE -

2.00 Into the regression equation.
The second guideline score value was always 2.00, as it

represents the regression of the Final Calculus Grade on the
Composite Scores. It is easy to show that the correlation between
the Expected Final Calculus Grade and the Composite Score is 1.0.
Thus, this guideline produced an Expected Final Calculus Grade of 2.00
in all cases.

The third and fourth guideline score values were obtained from
tables of Composite Scores with various possible cutting Composite
Scores and corresponding placement accuracies (see Table D.4 in
Appendix D). The fifth and sixth guideline score values were obtained
from tables of Composite Scores by observed Final Calculus Grades
aggregated Into Satisfactory and Unsatisfactory categories (see Table
D.3 in Appendix D).

The most appropriate cutoff Composite Score was selected,
after examining the six guideline values, based on distributional and
reasonability factors. The cutoff Composite Scores were then used to
determine the hypothetical placement of the students into the long
and short sequences, based on the cadets' Composite Scores In
relation to the cutoff Composite Scores.

Cognitive and WIIIIngham models generalIzed F-tests

The Cognitive and the Willingham models were compared to
determine which explained more of the variance In the data. The
Cognitive regression Equation 2 was compared to the Willingham
regression Equation 3, using a generalized E_-test. For this test RSSI
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and DFi were the residual sum of squares and the degrees of freedom
from the Willingham model and RSSf and DFf were the residual sum of
squares and the degrees of freedom from the Cognitive model. The
calculated E* value was compared to the F(a = O.05,DFi - DFf,DFf)
tabled value to test for significance. An observed E* value greater
than the tabled E value was Interpreted as Indicating that the
Cognitive model explained more of the variance in the data than did
the Willingham model. Thus, the follow !ng hypothesis was tested:

Statistical hypothesis H4.3: In Equation 2, P1 = P2,P3= P4 , and P5 = 0.

Cognitive and SOP Models ComDarison

Since the SOP placement model was the actual placement
procedure for the Classes of 1989 and 1990, the hit-and-miss tables
for the SOP model were obtained directly from the data. These tables
were compared to the Cognitive model hit-and-miss tables developed
for the Cognitive -- Willingham models comparison procedure.

Cognitive and Comouterized Models Comoarison

DFMS personnel reported that there were significant numbers
of cadets in the Class of 1991 who were placed Into sequences other
than that prescribed by the Computerized model. This researcher
determined these "hand-placed" cadets to be a threat to the validity
of any placement model comparison and so these cadets were removed
from the analysis. The procedure for removing the hand-placed cadets
involved determining the original Computerized Placement Model
placement, comparing that to the observed placement, and removing
those cadets for whom the original and observed placements
disagreed The original placement was obtained from DFMS, and the
1991 data set was appropriately reduced.
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This reduced Class of 1991 was Lwn used to compare the
Cognitive and Computerized models. The models were compared using
both a generalized E-test and hit-and-miss tables.

Cognitive and Computerized models hit-and-miss table

The Cognitive model was compared with the Computerized
model using a hit-and-miss table The hit-and-miss table for the
Computerized model was directly obtained from the reduced 1991
data set. The hit-and-miss table for the Cognitive model was
obtained by applying the basic Cognitive regression Equation 2 to the
reduced 1991 data set. A cutoff Expected Final Calculus Grade was
obtained using the methods of Appenzellar and Kelley (1983), as
before. The procedures for performing the hypothetical placement,
preparing the hit-and-miss tables, and comparing the hit-and-miss
tables were consistent with the previous procedures.

Cognitive and Comouterized models general Ized F-tests

Under the assumption of multivariate normality of the
prediction variables, multiple linear regression of binary data
produces a discriminant function equivalent to linear discriminant
function analysis (Morris & Rolph, 1981). It was determined that the
Cognitive model could be compared to the Computerized model by
using a generalized E-test. The Computerized model for the non-
USAFA Preparatory School graduates was represented by the
regression equation:

PASS - i + 0 1 CALC2 + 02ALO + 03ACI + I4CALC I + 15TRIO + 16CALC3 + (5).
No other equation was used for the other groups In the class of 1991
because there was an enforced DFMS policy that did not allow USAFA
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Preparatory School graduates to be placed into precalculus, and
another DFMS policy that did not allow non-USAFA Preparatory School
graduates who scored less than 45% on the algebra placement test, to
be placed in any course but precalculus.

The Cognitive model counterpart to Equation 5 was developed
by replacing the appropriate non-cognitive variables with cognitive
variables. This augmented Computerized regression equation was:

PASS -P0 + Pl CALC2 + P2ALGA + P3ALGNA + P4ACI + P5CALC I +
P6TRIGA + P7TRIGNA +P8MATH + PgCALC3 + c (6),

where PASS was the variable formed by classifying cadets as
successful (i.e., GRADE k 2.00) or unsuccessful (i.e., GRADE ( 2.00).

The Augmented Computerized regression Equation 6 was
compared to the Computerized regression Equation 5 using a
generalized E-test. For this test RSSi and DFi were the residual sum
of squares and the degrees of freedom from the Computerized model
and RSSf and DFf were the residual sum of squares and the degrees of
freedom from the Augmented Computerized model. The calculated F*
value was compared to the E( - 0.05,DFi - DFf,DFf) tabled value to
test for significance. An observed E value greater than the tabled E
value was interpreted as indicating that the Augmented Computerized
model explained more of the variance in the data than the
Computerized model due to the addition of the cognitive variables.

Statistical hypothesis H4.2.1: In Equation 6, P2-P3 - P6-P7- P8- 0.

Statistical hypothesis H4.2.2: If H4.2.1 is rejected, then some of P2.
P3, P6, P7, and P8 In Equation 6 are equal to zero.

Statistical hypothesis H4.2.3: In Equation 6 P2- P3, P6 - P7, and P8 - 0.



CHAPTER IV

RESULTS

This chapter describes the results of executing the procedures
listed in the Methodology Chapter. The results presented in this
chapter focus on supplying relevant Information about research
Questions III and IV, as research Questions I and II were previously
answered In the sections entitled The Cognitive Model for College
Mathematics Placement and Placement Variables, respectively.

Descriptive Statistics

Basic descriptive statistics for all the relevant variables In
the study are presented below. The means, standard deviations, and
intercorrelations for all the dependent and independent variables are
reported for each of the classes In the study broken down by
placement sequence.

Table 5.1.0 through Table 5.3.5 emphasize the similarities
between the three classes of cadets in terms of most of the variables
In the study. However, an apparent difference between the classes
seemed to exist for the means of the final calculus grades (GRADE).
The large samples normal approximation to the E-test,

sI - s2 2,
u -,L s 1 2 s2

42(n2-1 I ) 2(n I - I)

was first used to test If the class variances were the same, since all
classes had at least 582 observations. This test showed that each of
the variances was significantly different at the a - 0.05 level. This
result meant that the differences between the means had to be tested
using "Behrens-Fisher" methods. In this case, Burr (1974) suggested

66
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Table 5.1.0
1989 Means

Vari MM SO
ACla 582 3068.40 229.41
ACT-M 323 28.64 3.04
ALGb 582 22.50 5.79
ALGA 582 3.70 1.28
ALGNA 582 18.81 5.04
GRADE 582 291 0.77
MATHc 582 619.92 63.90
PAR 582 620.74 84.40
SAT-M 259 639.46 49.84
TRIGC 582 1241 3.49
TRIGA 582 1.06 0.70
TRIGNA 582 11.35 3.17

N. ACI is derived in part from ACT-M/SAT-M and PAR, b ALO = ALOA + ALONA.
c MATH is derived from ACT-M and SAT-M. d TRIO = TRI(A + TRIONA.

Table 5.1.1
1989 Intercorrelatlons

ACI ACT-M AL6 AL6A AL6NA 6RADE MATH PAR SAT-Il TRI6 TRI6A TRI6NA
ACI 1.00 .52 .28 .18 .27 .18 .47 .79 .44 .20 .09 .20
ACT-M 1.00 .47 .34 .45 .18 1.00 -. 02 -- .24 .24 .21
ALO 1.00 .66 .98 .14 .44 .04 .44 .48 .31 .46
ALGA 1.00 .51 .06 .32 -. 02 .33 .31 .27 .29
ALONA 1.00 .14 .43 .05 .42 .48 .28 .46
GRADE 1.00 .19 .10 .18 .18 .13 .17
MATH 1.00 -.04 1.00 .25 .24 .22
PAR 1.00 -.06 .08 -.05 .10
SAT-M 1.00 .24 .18 .23
TRIO 1.00 .54 .98
TRIGA 1.00 .38
TRI(NA 1.00
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Table 5.1.2
1989 Precalculus-Calculus Sequence Means

Variabl n an
AC18 121 2992.79 223.46
ACT-M 70 27.06 2.10
ALGb 121 15.70 4.04
ALGA 121 2.70 1.14
ALGNA 121 13.00 3.56
GRADE 121 3.10 0.84
MATHC 121 590.74 56.22
PAR 121 614.14 -)458

SAT-M 51 623.33 51.52
TRIGd 121 10.09 3.44
TRIGA 121 0.84 0.69
TRIGNA 121 9.26 3.11

Not* ACI is derived in pert from ACT-M/SAT-M and PAR. b ALO = ALGA + ALONkA
c MATH Is derived from ACT-M and SAT-M. d TRIO = TRIGA + TRIONk

Table 5.1.3
1989 Precalculus-Calculus Sequence Intercorrelations

ACI ACT-Il AL6 AL6A AL6NA 6RADE MATH PAR SAT-M TRI6 TRIGA TRI6NA
AC1 1.00 .07 .15 .04 .16 .05 .32 .83 .55 .16 -. 15 .21
ACT-M 1.00 .27 .33 .19 .16 1.00 -.37 -- -.02 .02 -.03
ALO 1.00 .54 .96 .19 .30 -.03 .44 .40 .24 .39
ALGA 1.00 .30 .15 .26 -. 14 .25 .19 .19 .17
ALONA 1.00 .16 .25 .01 .43 .39 .22 .39
GRADE 1.00 .12 .08 -.11 .05 -.04 .06
MATH 1.00 -. 16 1.00 .11 .10 .10
PAR 1.00 .03 10 -.22 .16
SAT-M 1.00 .15 .14 .14
TRIO 1.00 .56 .98
TRIGA 1.00 .40
TRIONA 1.00
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Table 5.1.4
1989 Calculus Sequence Means

niable aa timm
ACI a  461 3088.24 227.05
ACT-M 253 29.07 3.12
ALGb 461 2429 477
ALGA 461 3.96 1.18
ALGNA 461 20.33 419
GRADE 461 2.86 0.74
MATHC 461 627.58 63.64
PAR 461 622.47 81.54
SAT-M 208 643.41 48.74
TRIGd 461 13.02 3.25
TRIGA 461 1.12 0.69
TRIGNA 461 11.90 2.95

No ACI is derived in pert from ACT-M/SAT-M and PAR. b ALO = ALGA + ALONA
c MATH Is derived from ACT-M end SAT-M. ( TRIO - TRIGA + TRIGNA.

Table 5.1.5
1989 Calculus Sequence Intercorrelations

ACl ACT-M AL6 ALGA AL6NA GRADE MATH PAR SAT-M TRIG TR16A TRI6NA
ACI 1.00 .56 .24 .15 .23 .25 .48 .78 .40 .16 .12 .14
ACT-M 1.00 .41 .26 .40 .24 1.00 .03 -- .19 .25 .15
ALO 1.00 .59 .97 .29 .40 .03 .44 .36 .27 .34
ALGA 1.00 .39 .11 .26 -.01 .31 .21 .23 .17
AONA 1.00 .30 .39 .04 .41 .35 .24 .33
GRADE 1.00 .26 .12 .28 .30 .21 .28
MATH 1.00 -.02 1.00 .20 .23 .17
PAR 1.00 -09 07 0.00 .07
SAT-M 1.00 .22 .16 .21
TRIO 1.00 .52 .98
TRIMA 1.00 .33
TRIM 1 00
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Table 5.2.0
1990 Means

Variable a Mea m
ACIa 692 3055.97 217.78
ACT-M 374 28.04 2.73
ALGb 692 22.90 6.28
ALGA 692 3.72 1.32
ALGNA 692 19.19 5.45
GRADE 692 2.52 0.96
MATHC 692 612.67 62.86
PAR 692 622.63 79.72
SAT-M1 318 638.71 52.72
TRIGd 692 12.28 3.63
TRIGA 692 1.03 0.68
TRIGNA 692 11.24 3.33

No. ACI is derived in part from ACT-M/SAT-M and PAR. b ALO AL(A + ALGNA.
c MATH is derived from ACT-M and SAT-M. d TRIG = TRIGA + TRINA.

Table 5.2.1
1990 Intercorrelatlons

ACI ACT-M AL6 ALGA ALGNA GRADE MATH PAR SAT-M TRIG TR1GA TRIGNA
ACI 1.00 .45 .24 .14 .25 .25 .42 .78 .45 .10 .04 .10
ACT-M 1.00 .35 .21 .35 .21 1.00 -.09 -- .14 .14 .13
ALO 1.00 .70 .99 .34 .39 .05 .48 .52 .26 .51
ALOA 1.00 .56 .21 23 .03 .29 .42 .20 .42
ALOMA 1.00 .34 .39 .05 .49 .49 .25 .49
ORADE 1.00 23 .14 .30 .25 .13 .25
MATH 1.00 -. 10 1.00 .14 .14 .12
PAR 1.00 -.06 .03 -.06 .05
ST-M 1.00 .22 .17 .20
TRIO 1.00 .51 .98
TRIGA 1.00 .36
TRIGNA 1.00
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Table 5.2.2
1990 Precalculus-Calculus Sequence Means

Variable a uma5
ACI8  123 2955.50 202.40
ACT-M 62 27.07 2.40
ALGb 123 14.57 3.78
ALGA 123 2.42 1.07
ALGNA 123 12.15 3.44
GRADE 123 2.32 1.02
MATHC 123 584.50 50.51
PAR 123 606.90 74.23
SAT-M 61 600.00 40.21
TRIGd 123 8.64 3.10
TRIGA 123 0.71 0.66
TRIGNA 123 7.94 2.86

Not&. ACI Is derved In part from ACT-M/SAT-M and PAR. b ALGA + ALNA.
c MATH Is derived from ACT-M and SAT-M. d TRIG - TRIGA * TRIGNA.

Table 5.2.3
1990 Precalculus-Calculus Sequence Intercorrelatlons

ACI ACT-M ALG ALGA ALGNA GRADE MATH PAR SAT-M TRIG TRIGA TRIGNA
ACI 1.00 .56 .11 .03 .12 .34 .48 .78 .55 .01 -. 13 .04
ACT-M 1.00 .18-.13 .23 .30 1.00 -.05 -- .03 .15 0.00
ALO 1.00 .44 .96 .14 .16 -.02 .26 .19 .12 .18
ALGA 1.00 .18 .10 -.03 .06 .08 .19 09 .19
ALNA 1.00 .12 .18 -.04 .27 .15 .10 .14
GRADE 1.00 .19 .22 .21 .02 -. 09 .04
MATH 1.00 -.04 1.00 -.03 .04 -.04PAR 1.00 .07 -.01 -. 16 .04
SAT-M 1.00 -.05 -. 17 -. 02
TRIG 1.00 45 .98
TRIGA 1.00 .26
TRIGNA 1 00

10
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Table 5.2.4
1990 Calculus Sequence Means

Varinable a tMa D
ACIa 569 3078.00 215.00
ACT-M 312 28.23 2.75
ALGb 569 24.71 5.16
ALGA 569 400 1.20
ALGNA 569 20.71 453
GRADE 569 2.57 0.94
MATHC 569 618.80 63.64
PAR 569 626.00 80.52
SAT-M 257 647.90 51.19
TRIGd 569 13.06 3.23
TRIGA 569 1.10 0.66
TRIGNA 569 11.96 2.97

Nt a ACI is derived In part from ACT-M/SAT-M and PAR. b ALO - ALeA + ALONA

c MATH is derived from ACT-M and SAT-M. d TRIG - TRIGA + TRIOt4A.

Table 5.2.5
1990 Calculus Sequence Intercorrelatlons

ACI ACT-M ALG ALGA ALGNA GRADE MATH PAR SAT-M TRIG TRIGA TRIGNA
ACI 1.00 .42 .15 .05 .16 .21 .38 .78 .37 0.00 .01 -.01
ACT-M 1.00 .34 .19 .33 .19 1.00 -. 11 -- 09 .10 07
ALO 1.00 .61 .98 .40 .36 -.01 .36 .35 .16 .34
ALG 1.00 .44 .21 .19 -.02 .14 .28 .11 .28
ALONA 1.00 .40 .36 -. 01 .38 .32 .15 .32
GRADE 1.00 .23 .11 .25 .28 .16 .27
MATH 1.00 -. 14 1.00 .06 .11 .04
PAR 1.00 -. 12 -01 -.07 0.00
SAT-M 1.00 .07 .15 .04
TRIG 1.00 .48 .98
TRIGA 1.00 .30
TRIGNA 1.00

Is
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Table 5.3.0
1991 Means

Variable n uman
ACIa 742 3065.65 228.32
ACT-M 384 28.02 2.86
ALGb 742 22.85 6.30
ALGA 742 3.80 1.34
ALGNA 742 19.05 5.49
GRADE 742 2.47 1.07
MATHC 742 613.37 62,26
PAR 742 625.18 81.61
SAT-M 358 638.07 47.37
TRIGd 742 12.64 3.60
TRIGA 742 1.04 0.70
TRIGNA 742 11.60 3.26

Ne ACI Is derived In pert from ACT-M/SAT-M and PAR. b ALO ALGA + ALONA
c MATH is derived from ACT-M and SAT-M. d TRIO - TRIGA + TRIOtA.

Table 5.3.1
1991 Intercorrelat Ions

ACI ACT-t ALG ALGA ALGNA GRADE MATH PAR SAT-i TRI6 TR1GA TR1GNA
ACI 1.00 .51 .40 .28 .39 .38 .47 .84 .53 .31 .17 .31
ACT-M 1.00 .52 .41 .50 .34 1.00 .06 -- .33 .33 .30
ALG 1.00 .67 .98 .44 .44 .25 .42 .53 .35 .51
ALGA 1.00 .53 .37 .33 .16 .28 .37 .26 .35
AL"NA 1.00 .42 .42 .25 .41 .51 .34 .49
GRADE 1.00 .27 .31 .28 .40 .29 .37
MATH 1.00 .04 1.00 .27 .26 .24
PAR 1.00 .11 .21 .06 .22
SAT-M 1.00 .31 .24 .29
TRIO 1.00 .56 .98
TRIA 1.00 .41
TRIGNA 1.00

it
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Table 5.3.2
1991 Precalculus-Calculus Sequence Means

Variable n m aD
ACla 185 2925.00 209.74
ACT-M 94 26.38 1.84
ALGb 185 15.72 3.72
ALGA 185 2.84 1.24
ALGNA 185 12.89 3.34
GRADE 185 1.87 1.16
MATHC 185 579.46 46.81
PAR 185 591.42 81.85
SAT-M 91 606.59 36.73
TRIGd 185 9.42 3.39
TRIGA 185 0.69 0.68
TRIGNA 185 8.72 3.12

N& ACI Is derived in part from ACT-M/SAT-M and PAR. b ALO = ALGA + ALONA
c MATH is derived from ACT-M and SAT-M. d TRIG - TRIGA + TRIGN.

Table 5.3.3
1991 Precalculus-Calculus Sequence Intercorrelations

ACI ACT-M AL6 ALGA AL6NA GRADE MATH PAR SAT-M TRIG TRI6A TRIGNA
ACl 1.00 .37 .01 .10 -. 02 .29 .34 .86 .42 .02 -. 06 .03
ACT-M 1.00 .12 .13 .08 .25 .99 -. 01 -- .03 20 -.02
ALO 1.00 .46 .94 .14 .12 -.02 .06 .06 -.05 .07
ALGA 1.00 .14 .19 .16 .04 .12 .13 .01 .14
ALOMA 1.00 .08 .07 -.03 .03 .02 -.06 .03

WRADE 1.00 .12 .23 .14 .23 .20 .20
MATH 1.00 -.04 1.00 -. 04 .09 -.06
PAR 1.00 -.03 .03 -.08 05
SAT-M1 1.00 -.07 -.06 -.06
TRIG 1.00 .49 .98
TRIOA 1.00 .31
TRIMNA 1 00
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Table 5.3.4
1991 Calculus Sequence Means

ariable a uman
ACIa 557 3112.37 214.82
ACT-M 290 28.55 2.93
ALGb 557 25.22 5.08
ALGA 557 4.12 1.22
ALGNA 557 21.10 4.43
GRADE 557 2.66 0.96
MATHC 557 624.63 62.70
PAR 557 636.39 78.45
SAT-M 267 648.80 45.83
TRIGd 557 13.72 2.98
TRIGA 557 1.16 0.67
TRIGNA 557 12.56 2.69

No ACI Is derhad In part from ACT-M/ST-M a PAR. b ALO ALGA + ALOW

c MATH Is derived from ACT-M and SAT-M. d TRIG - TRIGA + TRIONA.

Table 5.3.5
1991 Calculus Sequence Intercorrelatlons

ACI ACT-I AL6 ALGA ALGNA 6RADE MATH PAR SAT-l TR16 TR1GA TRI6NA
ACI 1.00 .47 .29 .18 .29 .30 .43 .82 .47 .21 .12 .20
ACT-M 1.00 .48 .35 .46 .29 1.00 -.03 -- .25 .27 .21
ALO 1.00 .62 .98 .39 .36 .17 .28 .36 .30 .33
ALeA 1.OP .44 .31 .25 .07 .17 .23 .21 .20
ALONA 1.00 .36 .34 .17 .27 .35 .28 .32
OADE 1.00 .21 .26 .19 .31 .23 .29
MATH 1.00 -. 04 1.00 .18 .21 .14
PAR 1.00 .04 .13 .02 .14
SAT-M 1.00 .20 .22 .16
TRIO 1.00 .51 .98
TRIGA 1.00 .32
TRIONA 1.00
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using the Aspin-Welch procedure for comparing means. With this
procedure the pairwise differences between the mean GRADE values,
listed In Table 6, were compared using the test statistic:

Xl- X2

The data in Table 6 Indicate that, on the average, the final course
grades earned by the Class of 1989 were significantly higher than
those earned by both the Class of 1990 and the Class of 1991, even
after using the Bonferroni procedure for controlling Inflated Type I
error.

Table 6
Pairwise Comparison of Mean GRADE by Class

Comparison Difference dfa t
1989-1990 0.39 1269 7.92**
1989-1991 0.44 1312 8.73**
1990-1991 0.05 1430 1.08

N Dorees of freedom. * *Significant at the a = 0.01 level.

These significant differences could have resulted from the
differing initial capabilities of the classes, but this does not seem
reasonable given the similarities of the other achievement measures.
Another possible reason could be that DFMS reacted to grade Inflation
with the Class of 1989 and consciously corrected the problem by
controlling the grade distribution of the final calculus grades. This
seems plausible since only I I out of 582 (1.9%) cadets in the long and
short sequences earned Ds and Fs in the Class of 1989, while, for the
Class of 1991, the unsuccessful rate Increased to 103 out of 742
(13.9%). The distributions for all grades are displayed for each class
in Table 7.
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Table 7
Final Course Grades In Calculus by Class

Final Course Grades in Calculus'

Year F D C B A Total
198 4(0.7) 7(1.2) 156(26.8) 287(49.3) 128(22.0) 58T0)
1990 25(3.6) 48(6.9) 269(38.9) 240(34.7) 1 10(15.9) 692(100)
1991 50(6.7) 53(7.1) 271(36.5) 238(32.1) 130(17.5) 742(100)

N& a The number of cdets who earned the grade (percentage of class In the study).

Table 7, In conjunction with Table 3, contains evidence of
another possible DFMS policy change. The number of cadets placed
into either the long or short sequence Increased by 90 cadets from the
Class of 1989 to the Class of 1990 and 50 cadets from the Class of
1990 to the Class of 1991. This means that the enrollment for the
Class of 1989, 42.3% of the total entering freshman class, Increased
to 55.0% of the total entering freshman Class of 1991. This
translates Into an Increase of 12.7%, with about one extra cadet
placed Into the long sequence for every two extra placed into the
short sequence. Thus, over the three class period, there were fewer
advanced placed freshmen and cadets, who were likely to be placed
out of the short sequence In the Class of 1989, but were more likely
to placed Into the short sequence In the Class of 1991. These cadets
were also less likely to receive as high a final grade In calculus as
those In the Class of 1989. These changes In course placement and
final calculus distributions demonstrate a changing environment
commensurate with Implementing new policies.

While the methodology chapter Implied that the long and short
sequences were stable In terms of the placement procedures used to
enroll cadets, the capability of cadets enrolled, syllabi, examinations,
grading of the examinations, and assigning grades, It appears that
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changes did indeed take place. Apparently, many of the cadets in the
Classes of 1990 and 1991 would have been placed differently had they
been in the Class of 1989. In addition, there may have been an effort
to counteract grade inflation in the calculus course. These factors
will necessarily Impact the results of the Investigation of research
Question III and Question IV.

Question III Results

III. Does the Cognitive Model for College Mathematics
Placement, using the predictor variables identifled in research
Question II, produce a valid placement procedure?

Research Question III was concerned about the validity of the
Cognitive Model for College Mathematics Placement in conjunction
with the placement Instruments used by DFMS for the Classes of
1989, 1990, and 1991. The current section reports the results of
investigating the construct, content, and predictive validities of the
Cognitive model for each class.

Content Validity of Cognitive Subscales

The content validity of the placement subscales was
Investigated using judges' responses on the Content Validity
Questionnaire (Appendix B). The judges responded to a single Likert
scale Item which required each Judge to classify each placement
subscale item as one that did not test a content topic In the syllabus,
or was either a poor, adequate, good, or an excellent test Item of a
content topic in the syllabus. These responses were coded as /
through . respectively. The subscales were considered content valid
It the average coded value was at least 2.5 and the average
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percentage of agreement among the judges was at least 67%. The
results of the content validity study are presented in Table 8.

Table 8
Cognitive Model Content Validity Agreement

No. of Average % Modal Average
ITs Items Ageement Judgment
ALG 40 65.0 4 4.0
ALGA 6 33.3 4 3.7
ALGNA 34 70.6 4 4.0

TRIG 20 75.0 4 4.1
TRIGA 2 83.3 NM a 4.2
TRIGNA 18 74.1 4 4.0

t. aNo mods.

As shown In Table 8, only the algebra analysis subscale did riot
meet the content validity criterion. Even though the average coded
score of 3.7 exceeded the criterion of 2.5, the average percentage of
agreement, 33.3% was smaller than the required 67%. Appendix B
shows that three out of the six items (50%) composing the algebra
analysis subscale had no agreement among the judges concerning the
adequacy of the Items. The three items which had 0% agreement had
score patterns of coded judgments of 3, 4, and 5 indicating that while
a true disagreement existed among the judges, the disagreement was
not about the whether the Items were not representative of the
content of the course nor that the items were poor test items. All of
the Judges felt that these three items were at least adequate test
items. Without these three average coded scores the average percent
agreement was 67%. Thus, the algebra analysis and non-analysis
subscales were composed of items which were all judged to be at
least adequate test items of the content of the precalculus course.
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The trigonometry cognitive subscales received judgments
which exceeded all of the content validity criteria. This test can be
characterized as having good test items which reflect the
trigonometry content of the precalculus course.

Construct Validity of Cognitive Subscales

H3.1: The Pearson product-moment correlation coefficients
between the hypothesized target factor loadings and the
observed two-factor factor loadings, after rotation, are zero.

The results of testing H3.1 are reported in this section. This
hypothesis seeks to Investigate the construct validity of the DFMS
placement examinations interpreted by the Cognitive Model for
College Mathematics Placement.

The construct validity was investigated by classifying the
items of the algebra and trigonometry placement examinations as
either analysis or non-analysis items and then performing
confirmatory factor analysis of cadets' individual responses,
separated into analysis and non-analysis subscales. The confirmatory
factor analysis was performed using a principal components factor
analysis procedure with the two factor solution subsequently
obliquely rotated using the Procrustes rotation option of SAS (1985).
The subsequent rotated factor pattern was correlated with the target
identified by the analysis/non-analysis item pattern of the placement
examinations.

The analysis/non-analysis Item pattern was determined from
combining the judgments of mathematics and mathematics education
experts about the algebra and trigonometry placement test Items
placed on a questionnaire (see Appendix B). The judges were ask" ... to
classify the Items as either computation, comprehension, applic'jtlon,
or analysis items, based on the major behavior classification
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descriptions of Wilson's (1971) Model of Mathematics Achievement.
The judgments were then combined to form analysis and non-analysis
item subscales for each content strand. Items were primarily
categorized using the judgments of the mathematics education
experts; an item was classified as an analysis item if at least 50 of
them agreed on the category. The Items categorized as analysis items
are listed in Table 9 with their associated percentage of agreements.
A complete list of all the items and their classifications are
compiled In Appendix C.

The items identified in Table 9 defined four subscales. Algebra
placement test items numbers 6, 11, 15, 18, 26, and 39 formed the
algebra analysis subscale (ALGA), and the remainder of the algebra
items formed the algebra non-analysis subscale (ALGNA). The
trigonometry placement test Items numbers 13 and 19 formed the
trigonometry analysis subscale (TRIGA) and the remainder of the
trigonometry Items formed the trigonometry non-analysis subscale
(TRIGNA).

The subscales were used to form two target vectors for each
content area for the subsequent factor analysis. One vector, for each
content area, represented the lower three main classification levels
of cognitive behavior (computation, comprehension, and application),
specified by the non-analysis subscale. The values of the elements of
this vector were J If the Items were not analysis Items and Q If the
Items A= analysis Items. The other vector, for each content area,
was the complement of the previous vector. These vectors were used
as targets for an oblique Procrustes rotation of the two factor,
principal components factor solution of the individual cadet
responses for each class by placement test. The resulting factor
loadings were then correlated with the original target vectors to
assess the similarity with the hypothesized factor pattern. The
results of the factor analyses, rotations, and correlations are given In
Table 10.
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Table 9
Percent Agreement of Analysts Items

Algebra Item NO. 6 11 15 18 26 39
Sgareemetb: 43 57 86 86 43 57

Complete Test 73.7
Analysis Subscale 62.0
Non-analysis subscale 75.7

Trigonometry Item No.C: 13 19
agrement: 57 29

Total Trigonometry
Complete Test 66.4
Analysis Subscale 43.0
Non-analysis Subscale 69.0

a Algebra Items classified as analysis items. b Percentage of agreement of behavior
level classifications. c Trigonometry items classified as analysis items.

Table 10 reveals that the first two factors of the solution
space explain only a small amount of variance In the data for each of
content areas. In addition, after rotation the reference axes were
virtually identical which suggests that the first two factors did not
correspond to the hypothesized analysis and non-analysis factors.
Thus, it is reasonable that the correlations between the resulting
factor patterns and the target factor patterns were not significant at
the a - 0.05 level. Therefore, there was no evidence to reject
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hypothesis H3. 1, providing little support for the decomposition of the
placement examinations into analysis and non-analysis subscales.

Table 10
Summary of Results of Confirmatory Factor Analyses

X Factor Loadings
Variance Total FKtors Correlations and t-valuesC

Test/Clas Emlained5  Commnalitv Qrelonb FKtor I Factor 2

AL 1989 9.8(4.7) 5.80 0.898 -0.06 (-.35) 0.15 (.94)

AL6 1990 11,6(4.1) 6.24 0.956 0.01 (.09) 0.03 (-.16)

AL6 1991 11.5(3.8) 6.13 0.761 0.01 (.06) 0.18(1.11)

TRI6 1989 16.2(8.5) 4.93 0.889 -0.04 (-.19) 0.13 (.56)

TRI6 1990 18.5(7.6) 5.21 0.869 0.13 (.57) 0.02 (.08)

TRI6 1991 17.3(7.9) 5.04 0.774 -0.06 (-.24) 0.20 (.85)

M . X variance explained by Factor 1 (3 variance explained by Factor 2) eliminating
other factors. b Correlations between reference axes of the rotated factor space.
C Correlations between target and observed faor loadings (1-value for test of HO: r=O).

Thus, the analysis subscales did not seem to be measuring
precisely what the experts thought; however, the content validity
Investigation shows that the trait being measured Is connected to the
precalculus course. The next concern was to establish the
consistency of the measurement which Is discussed in the next
section.

Reliability of Cognitive Subscales

This section reports the results of Investigating the
reliability, Internal consistency, of the cognitive subscales for
adequacy and stability over time. The statistical hypotheses tested
In this section were:
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Statistical hypothesis H3.2.1: The reliability coefficients of
the algebra analysis subscales are not pairwise different for
the classes of 1989, 1990, and 1991.

Statistical hypothesis H3.2.2: The reliability coefficients of
the algebra non-analysis subscales are not pairwise different
for the classes of 1989, 1990, and 1991.

Statistical hypothesis H3.2.3: The reliability coefficients of
the trigonometry analysis subscales are not pairwise different
for the classes of 1989, 1990, and 199 1.

Statistical hypothesis H3.2.4 The reliability coefficients of
the trigonometry non-analysis subscales are not pairwise
different for the classes of 1989, 1990, and 1991.

The KR-20 Reliability coefficients, estimates of internal
consistency, were calculated for the placement examinations for each
class using only the scores from the cadets in the study; these values
are reported in Table 11. Overall, the reliability values for the
analysis subscales of the algebra and trigonometry placement tests
were all low, with the algebra analysis items explaining at least 28%
of the variance of their subscale total scores, and the trigonometry
analysis items explaining at least 17X of the variance of their
subscale total scores. The total tests and the non-analysis subscales
show evidence of acceptable reliability values.

The reliability coefficients for appropriate examinations were
pairwise compared across the classes of 1989, 1990, and 1991 using
a test described by Snedecor and Cochran (1969) and attributed to
Fisher (1921). This procedure uses the logarithmic transformation of

I.ti + rl
the correlation coefficient r to z* - ln t-, r) such that the

standard error of the difference between the transformed correlation
coefficients is:
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(Z - z2) a= j(n13 + 0n2-3)"

Table 11
Reliability Coefficients of Placement Tests by Class

Class Tes n Skb
1989 ALG 0.75 582 22.5 5.8

ALGA 0.28 582 3.7 1.3
ALGNA 0.72 582 18.8 5.0
TRIG 0.70 582 12.4 3.5
TRIGA 0.21 582 1.1 0.7
TRIGNA 0.68 582 11.4 3.2

1990 ALG 0.79 692 22.9 6.3
ALGA 0.33 692 3.7 1.3
ALGNA 0.76 692 19.2 5.4
TRIG 0.72 692 12.3 3.6
TRIGA 0.17 692 1.0 0.7
TRIGNA 0.71 692 11.2 3.3

1991 ALG 0.79 742 22.9 6.3
ALGA 0.37 742 3.8 1.3
ALGNA 0.77 742 19.1 5.5
TRIG 0.71 742 12.6 3.6
TRIGA 0.24 742 1.0 0.7
TRIGNA 0.71 742 11.6 3.3

te I Mean test score. b $Stwrlrd deviation of the test score&

Fisher found this transformation to be "almost normal with
standard error . . . practically Independent of the value of the
correlation In the population from which the sample Is drawn"
(Snedecor & Cochran, 1969, p. 185). Thus, the differences of the
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values of z* will be compared to standard normal scores. The
differences between the z* values are provided in Table 12.

Table 12
Tests of Differences Between Test Rellabilities by Class

Classes Test z -4 zz(z- z*)

1989-1990 ALG -0.1043 0.05638 -1.8510
ALGA -0.0561 0.05638 -0.9948
ALGNA -0.1022 0.05638 -1.8132
TRIG -0.0489 0.05638 -0.8675
TRIGA 0.0366 0.05638 0.6498
TRIGNA -0.0560 0.05638 -0.9925

1989-1991 ALG -0.0985 0.05550 -1.7743
ALGA -0.0943 0.05550 -1.6999
ALGNA -0.1097 0.05550 -1.9759
TRIG -0.0199 0.05550 -0.3583
TRIGA -0.0380 0.05550 -0.6837
TRIGNA -0.0588 0.05550 -1.0588

1990-1991 ALG 0.0059- 0.05296 0.1110
ALGA -0.0383 0.05296 -0.7224
ALGNA -0,0074 0.05296 -0.1404
TRIG 0.0290 0.05296 0.5481
TRIGA -0.0746 0.05296 -1,4083
TRIGNA -0.0028 0.05296 -0,0530

In Table 12 none of the KR-20 reliability coefficients for the
cognitive subscales were significantly different at the a - 0.05 level,
after using Bonferronis correction for three dependent hypothesis
tests. Thus, hypotheses H3.2.1, H3.2.2, H3.2.3, and H3.2.4 cannot, In
general, be rejected, Implying that the reliability for the placement
tests, and for the cognitive subscores, had reasonably stable Internal
consistency measures over the three year span. While the reliability
coefficients of the tests were stable, there were strong Indications
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In Table 11 that the levels of reliability of some of the tests were
unacceptably low.

While the algebra and trigonometry non-analysis subscales
exhibited KR-20 values within the range acceptable for locally
developed achievement tests, (e.g., KR-20 > 0.70), the values for the
cognitive scales did not. Specifically, the analysis subscales for both
content areas, displayed KR-20 values much below what Is generally
considered acceptable; on the average 0.33 and 0.21 for the respective
algebra and trigonometry analysis subtests. This result may be a
function of the extremely small number of Items composing the
subscales.

From the Spearman-Brown prophecy formula (Crocker and
Algina, 1986) one can estimate the number of Items, like those on the
suDtests, needed to achieve a KR-20 value of at least 0.70. The

formula for performing this calculation Is n 7(i-r) where n is the3rI
number by which the original number of Items must be multiplied In
order to achieve the KR-20 value of 0.70, given that the original KR-
20 value was r. Table 13 shows the predicted total number of Items
needed in each subtest to increase its KR-20 value to 0.70.

The data In Table 13 Indicate that, on the average, the algebra
analysis Item subscale needs an additional 24 Items to achieve a KR-
20 value of at least 0.70 and the trigonometry analysis Item subscale
needs an additional 17 Items. On the average, the non-analysis
subscales exceeded the target KR-20 value of 0.70.

The results of this last section cast doubt about the usefulness
of the Cognitive model applied to the DFMS placement examinations
because of the extremely low reliability of the analysis subscales.
The reliability can have a dramatic affect upon the validity
coefficients between predictors, analysis subscales scores, and the
criterion, final calculus grades. Using classical mental test theory,
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it Is possible to show that the true correlation between a predictor,
X, and a criterion, Y, is:

where pxy is the validity coefficient between test X and criterion Y,

pxx' is the reliability coefficient of test X, and pyy. Is the reliability

coefficient of criterion Y. Thus, it Is expected that In this study the
analysis subscales scores had a reduced capability to predict final
calculus grades because of low reliability and may have contributed
to the Inconclusive results of the construct validity Investigation.
The next section will empirically assess the capability of the
cognitive variables to predict final calculus grades.

Table 13
Spearman-Brown Calculations for Reliability Coefficients by Test and

Class
Original Original Target Total No.

Class Iet KR-20 No. Items KR-20 [I Im e
1989 ALGA 0.28 6 0.70 6.0 36

TRIGA 0.21 2 0.70 8.8 18
TRIGNA a  0.68 18 0.70 1.1 20

1990 ALGA 0.33 6 0.70 4.7 29
TRIGA 0.18 2 0.70 10.6 22

1991 ALGA 0.37 6 0.70 4.1 24
TRIGA 0.24 2 0.70 7.4 1s

WSt I The TRIONA subscale for the Clas of 1990 and 1991 exceded the 0.70 target

Predictive Validity of Cognitive Model

The predictive validity of the cognitive model variables
identified in Ouestion II was investigated, In regard to predicting the
final calculus grades, using multiple linear regression. E-tests fand I-
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tests were used to determine if the cognitive variables were
statistically significant predictors of final calculus grades. The
specific hypotheses tested were:

H3.3. 1: Using the regression equation:
OAE = o + 0 IALGO+ ONA + TROA + P4TRIONA + ItMATH + C (2),
the parameters P ZP2, p3, p4, and P5 are all simultaneously
equal to zero.

H3.3.2: If H3.3. 1 is rejected, then some of the parameters P ,
P2,P3,P4, and P5 In Equation 2 are equal to zero.

In addition, the prediction equations for the three classes were
cross-validated. The cross-validations were accomplished by
comparing shrinkage values. Shrinkage values of less than 0.10 were
interpreted as indicating relatively stable accuracies of predictions
across classes.

Table 14 summarizes the results of regressing GRADE onto
ALGA, ALGNA, TRIGA, TRIGNA, and MATH for the Classes of 1989,
1990, and 1991. The percentage of variance of GRADE explained by
the predictors Increased with each succeeding class, from 5.7% In the
Class of 1989 to 24.9% In the Class of 1991. In each class, except
1991, the algebra and the trigonometry analysis subscales scores
were not significant predictors of GRADE. In all classes, except
1989, the non-analysis subscales scores and the MATH scores were
significant predictors of GRADE.

While each of the regression equations explained a statistically
significant amount of the variance found in GRADE for each class, the
regression equation for the Class of 1989 must be considered as
practically Ineffective, with a a2 of 0.06. The other two equations
produced reasonable values for f2, e.g., 0. 14 and 0.25.
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Table 14
Cognitive Model Regression ANOVA Tables With Parameter Estimates

Residual
Sum of

Class Model DE gua E WE
1989 Cognitive 576 323.4068 0.0571 6.976 0.0001

Parameter Estimates for Cognitive Model Regression

Parameter Standard I for HO
Varable DE Estimate Ero Parameter Prob > ItI

Intercept 1 -1.4038 0.3114 4.508 0.0001
ALGA 1 -0.0327 0.0288 - 1.138 0.2557
ALGNA 1 0.0057 0.0081 0.707 0.4797
TRIGA 1 0.0587 0.0491 1.193 0.2335
TRIGNA 1 0.0274 0.0116 2.371 0.0181
MATH 1 0.0018 0.00055 3.377 0.0008

Residual
Sum of

Class Model of SguareS 2 F
1990 Cognitive 686 549.7586 0.1392 22.179 0.0001

Parameter Estimates for Cognitive Model Regression

Parameter Standard I for HO
Varable QE Estimate Ero Pmee 0Pro>Itl

Intercept 1 0.1644 0.3466 0.474 0.6354
ALGA 1 -0.00012 0.0318 -0.004 0.9969
ALGNA 0.0413 0.0085 4.861 0.0001
TRIGA 1 0.0175 0.0539 0.324 0.7461
TRIGNA 1 0.0330 0.0125 2.643 0.0084
MATH 1 0.00 19 0.00059 3.242 0.0012
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Residual
Sum of

Class Model DF S re E2  DIE
1991 Cognitive 736 639.1808 0.2485 48.686 0.0001

Parameter Estimates for Cognitive Model Rearession

Parameter Standard . for HO
Varit DF Estimate Er= arameter , 0 Prob > Itl
Intercept 1 -0.2726 0.3492 -0.781 0.4352
ALGA 1 0.1299 0.0306 4.247 0.0001
ALGNA 1 0.0356 0.0083 4.278 0.0001
TRIGA 1 0.1567 0.0546 2.869 0.0042
TRIGNA I 0.0553 0.0127 4.350 0.0001
MATH 1 0.0012 0.00062 2.012 0.0446

Thus, the results are evidence that hypothesis H3.3. should be
reete for all three classes, i.e., the parameters P1, P2, P3, P4, and
P5 were not all simultaneously equal to zero. The evidence In Table
14 was mixed for rejecting the hypothesis H3.3.2, that parameters p I
and P3 in Equation 2 were equal to zero. There was strong evidence to
re the hypotheses H3.3.3, that P2, P4, and P5 were zero.

The results for H3.3.2 appear to be conditional upon the degree
of grade Inflation present In the class. When the level of
unsuccessful students was less than 11% (see Table 7), not all the
cognitive variables were significant predictors of GRADE. But, for
the Class of 1991, which had 13.8X unsuccessful cadets, all of the
cognitive variables were significant at the a - 0.05 level.

Hence, the increasing number of unsuccessful students in the
classes is particularly attractive to explain the commensurate
pattern of the increasing amount of variance of GRADE accounted for
by the cognitive predictors. This apparent Increase In the
predictability of GRADE by the cognitive predictors was investigated
by cross-validation.
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Cross-Validation of Cognitive Model

The Cognitive model was cross-validated using the three
classes In the study. The regression coefficients obtained from
regressing GRADE on ALGA, ALGNA, TRIGA, TRIGNA and MATH for the
Class of 1989 were used to predict GRADE using the observed values
of the same predictor variables for the Classes of 1990 and 1991.
The standard errors of estimate were computed from the difference
between the predicted and observed GRADE values. The multiple
correlation coefficients between the predicted and observed GRADE
values were computed as Pearson-product moment coefficients. This
same method was applied using the regression coefficients for the
Class of 1990 to predict GRADE for the Class of 1991. The standard
error of the estimate and the correlation coefficient were similarly
computed. These values are reported In Table 15, while the shrinkage
values are displayed In Table 16.

Table 16 shows that the 1991 shrinkage value for the 1989
equation was relatively large, 0.101, indicating that this prediction
equation may not produce stable prediction across two years. The
1990 prediction equation seemed to provide an acceptable 1991
shrinkage value, 0.033, and therefore could be expected to produce a
stable placement across at least one year. While there is evidence of
Instability of the accuracies of prediction across the three classes,
the effect is not as strong as suggested by the variations in the
regression coefficients. This supports the contention that the
restriction of range of GRADE across the three classes had a strong
Influence on the degree of usefulness of the cognitive predictors.
Since the analysis subscale scores were significant predictors of
GRADE for the Class of 1991, it may be that, In general, the cognitive
variables are most useful in predicting final course grades when the
number of unsuccessful students are allowed to be around 139 of the



93

class. It is also worthwhile noting that the cognitive variables may
become more efficient predictors after Increasing the length of the
analysis subscales with sufficient numbers of extra Items to
Increase their reliabilities.

Table 15
Cognitive Model Cross-Validation Correlations and Standard Errorsa

1990 1991 1991
1989 Cms-aldaUon 1990 Cross-valldation Cross-valldation 1991

Equation of 1989 equation Equation of 1989 equotion of 1990 equation Equation
R SE R SE R SE R SE R SE R SE

.239 .749 .320 .920 .373 .895 .397 1.01 .466 .957 .499 .932
Note. a Standard error of regression.

Table 16
Cognitive Model Cross-validation Shrinkage Values

Shrinkage( 1990,1989) - 0.373 - 0.320 - 0.053
Shrinkage( 1991,1989) = 0.499 - 0.397 - 0.102*
Shrinkage( 1991,1990) - 0.499 - 0.466 = 0.033

Note. * Unstable prediction, since the value exceeds the 0. 10 critical
value.

Summary of Cognitive Model Validity

The results for testing Question III can be summarized by
noting that there was: (a) acceptable support for the content validity
of the cognitive subscales; (b) marginal support for the predictive
validity of the cognitive variables with final calculus grades; (c) lack
of support of the construct validity of the cognitive subscales; (d)
lack of support for acceptable levels of reliability for the analysis
subscales.

Two major factors may account for these findings. One factor
reported was the likelihood that the small number of analysis items
could have caused the low the reliability of the analysis subscales. It
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was pointed out that the low reliability coefficients necessarily
limited the size of the predictive validity coefficients that could be
obtained. The other factor was that there was an apparent change in
DFMS policies concerning the number of placements In the long and
short sequences and the grade distributions of the cadets In these
sequences. This researcher posited that the reason for the policy
changes may have been In reaction to the excessive Inflation of final
calculus grades, primarily experienced in the Classes of 1989 and
1990. When the number of unsuccessful cadets reached about 13% of
the class, the cognitive variables were both practically and
statistically significant, despite the problems of the unreliability of
the analysis subscales. Thus, if enough of the right kind of analysis
items were added to the analysis subscales, and if the final grades
for calculus were controlled to give at least 13% unsuccessful
grades, then the cognitive subscales would likely produce acceptable
reliability coefficients and all of the cognitive variables would
probably be significant predictors of final calculus grades. Despite
the marginal validity of the Cognitive model, It is still possible that
the model could be useful for placement.

The efficiency of the Cognitive model was compared with that
of the Willingham, SOP, and the Computerized placement models. The
results of those analyses are reported in the next section.

Question IV Results

Question IV dealt with the efficiency of the Cognitive Model for
College Mathematics Placement compared to that of a theoretically
based placement model, the Willingham model, and the two empirical
placement models used by DFMS, the SOP model and the Computerized
placement model. This section reports the results of the comparisons
of the various models. Two methods were used for the comparisons,
hit-and-miss tables and generalized E-tests.
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Comparing the Cognitive and Willingham Models

The Cognitive and Willingham models were applied to each of
the three classes of cadets; the resulting hit-and-miss tables were
compared, and the generalized E-tests were evaluated. Before the

4 comparisons were performed; however, the Willingham model was
first validated with methods similar to those used to validate the
Cognitive model.

Validating the Willingham Model

The validity of the Willingham model, as applied to the Classes
of 1989, 1990, and 1991, was Investigated through an analysis of the
content and predictive validity of the algebra and trigonometry
placement tests. The methods used to analyze the content and
predictive validity of the model were the same as those previously
used for the Cognitive model. Thus, multiple linear regression was
used to assess the capability of ALG and TRIG, as specified by the
Willingham model, to predict final calculus grades. The content
validity of the two placement tests was assessed using the
percentage of agreement and the average Likert scale value on the
placement test Items obtained through a content validity
questionnaire (Appendix B).

Content validity of overall olacement tests

The content validity of the placement tests was Investigated
by having the precalculus course director and two precalculus
Instructors respond to a single LIkert scaled Item on the content
validity questionnaire. The Likert Item required each Judge to
classify each of the placement test Items as one that does not test a
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content topic in the syllabus, or as either a poor, adequate, good, or an
excellent test item of a content topic In the syllabus (see Appendix
B). These responses were coded as I through 5. respectively. The test
was considered valid if the average coded value was at least 2.5 and
the average percentage of agreement among the judges was at least
67%. The results of the content validity assessment are listed In
Table 17.

Table 17
Willingham Model Content Validity Agreement

No. of Average Modal Average
S Items Percent Jumen

ALG 40 65.0 4 4.0
TRIG 20 75.0 4 4.1

As reported in Table 17, only the algebra placement test did not
meet the content validity criterion. Even though the average coded
score of 4.0 exceeded the criterion of 2.5, the average percentage of
agreement, 65.0%, was smaller than the required 67%. Appendix B
shows that there were five items which had 0% agreement, but all of
these items had score patterns of coded judgments of 3, 4, 5. Thus,
while a true disagreement existed among the Judges, the
disagreement was not about the items not being representative of the
content of the course nor that the items were poor test items. All of
the Judges felt that these five items were at least adequate test
Items. Without these five average coded scores the average percent
agreement was 74.5 %. Thus, the algebra test was composed of items
which were all Judged to be at least adequate test Items of the
content of the precalculus course.

V
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Reliabllty of placement tests.

This section reports the results of Investigating the Internal
consistency of the placement tests for adequacy and stability over
time. The statistical hypotheses tested in this section were:

H4. 1. 1: The reliability coefficients of the algebra placement
tests are not pairwise different for the classes of 1989, 1990,
and 199 1.

H4.1.2: The reliability coefficients of the trigonometry
placement tests are not pairwise different for the classes of
1989, 1990, and 1991.

The KR-20 reliability coefficient was used to determine the
internal consistency of each of the placement tests for each class of
cadets. These values were then compared using Fishers z statistics
to test for significant differences between the classes. Table 18
displays the KR-20 values for each placement test by class. The table
Indicates that each of the tests produced a KR-20 which exceeded
0.70, an acceptable reliability coefficient for a locally constructed
test.

The stability of the KR-20 values across the three classes
were analyzed by transforming the KR-20 values Into Fisher e values
and testing the significant differences between the classes. The
dif ferences between the z values are reported In Table 19.

Table 19 Indicates that the KR-20 coefficients for the algebra
and trigonometry placement tests were no significantly different at
the a - 0.05 level, after using Bonferroni's correction for three
dependent hypothesis tests. Thus, hypothesis H4.1.1 may not be
rejected, implying that the algebra placement test had stable internal
consistency measures over the three-year span. There is also M
evidence to reject hypothesis H4.1.2; hence, the reliability for the
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trigonometry placement test wa assumed to be consistent over the
three classes of cadets.

Thus, it is expected that the reliability coefficients did not
overly limit the predictive validity coefficients of the placement
tests with final calculus grades. The next section reports the
analysis of the predictive validity of the Willingham model.

Table 18
Reliability Coefficients of Placement Tests by Class

Class Test KR-20 n1 MW LOb

1989 ALG 0.75 582 22.5 5.8
TRIG 0.70 582 12.4 3.5

1990 ALG 0.79 692 22.9 6.3
TRIG 0.72 692 12.3 3.6

1991 ALG 0.79 742 22.9 6.3
TRIG 0.71 742 12.6 3.6

Noe. I Mean test score b Standard deviation of scores on the placement test.

Table 19

Tests of Differences Between Test Reliabilities by Class

Classes Test -(,-z) °(z - 2)

1989-1990 ALG -0.1043 0.05638 -1.8510
TRIG -0.0489 0.05638 -0.8675

1989-1991 ALG -0.0985 0.05550 -1.7743
TRIG -0.0199 0.05550 -0.3583

1990-1991 AIG 0.0059 0.05296 0.1110
TRIG 0.0290 0.05296 0.5481
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Predictive validity of Willingham model.

The predictive validity of the Willingham model was
investigated for each class, in regard to predicting the final calculus
grades, using multiple linear regression. E-tests and t-tests were
used to determine If the variables of the Willingham model were
significant predictors of final calculus grades. The specific
hypotheses tested were based on the regression equation:

GRADE -PO + PIALG + P2TRIG + c (3).
The specific hypotheses tested were:

H4.2. 1: The parameters p I and P2 of Equation 3 are both
simultaneously equal to zero.

H4.2.2: If H4. ils rejected, then at least one of the
parameters P 1 and P2 in Equation 3 is equal to zero.

Table 20 contains the analysis of variance tables and
parameter estimates for the Willlngham model applied to the data
from each of the classes. Table 20 provides strong evidence to rejet
H4.2. 1, that the parameters P 1 and P2 are simultaneously equal to zero
for each of the classes. Additionally, the parameter estimates listed
In Table 20 Indicate that the algebra and trigonometry total
placement scores are generally significant predictors of the final
grades In calculus. The only exception to this was that ALG was not a
significant predictor of final grades In calculus for the Class of 1989.
However, ALG became a significant predictor as the number of
unsuccessful cadets increased for the subsequent classes. Thus, In
general, there was evidence to reject H4.2.2, that the parameters P1
and P2 were equal to zero for each of the classes.

Table 20 implies that the Willingham model Is valid for
predicting final course grades but, these data do not speak to the
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stability of the prediction. The stability issue was analyzed by the
cross-validation of the Individual Willingham model prediction
equations.

Table 20
Willingham Model Regression ANOVA Tables With Parameter

Estimates
Residual
Sum of

Class Model F S uafe2 E 9 E
1989 Will ingham 579 330.8437 0.0354 10.628 0.0001

Parameter Estimates for Will ingham Model Regression

Parameter Standard t for HO
Variable QE Estimate E=ror Parameter 2Q >
Intercept 1 2.3081 0.1394 16.553 0.0001
ALG I 0.0088 0.0062 1.417 0.1570
TRIG 1 0.0324 0.0102 3.163 0.0016

Residual
Sum of

Class Model QF Sguae R2  E o2F
1990 Willingham 689 559.5400 0.1238 48.695 0.0001

Parameter Estimates for Willingham Model Regression

Parameter Standard I. for Ho
Vadaii DE Estimate Err Parameter - 0 r I
Intercept 1 1.1797 0.1429 8.253 0.0001
ALG 1 0.0440 0.0064 6.904 0.0001
TRIG 1 0.0274 0.01 10 2.485 0.0132
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Residual
Sum of

Class Model DE i R2  E 92F
1991 Wllingham 739 653.2467 0.2320 111.624 0.0001

Parameter Estimates for WIlllIngham Model RegressIon

Parameter Standard I. for HO
Vari DE Estimate E=o r a Prob > Itl
Intercept 1 0.3608 0.1453 2.483 0.0132
ALG 1 0.0547 0.0064 8.495 0.0001
TRIG 1 0.0675 0.0113 5.983 0.0001

Cross- Val Idat Ion of Willingham model.

The Willingham model was cross-validated with the same
methods used to cross-validate the Cognitive model. Regression
coefficients, obtained from regressing GRADE on ALG and TRIG, for
one class were used to predict GRADE for the subsequent classes.
Multiple correlation coefficients and standard errors of estimate
were computed from these regressions. These values are provided in
Table 21. Shrinkage values were also computed and reported In Table
22. Shrinkage values In excess of 0. 10 were considered as evidence
of unstable predictions.

Table 21
Willinqham Model Cross-Validation Correlations and Standard Errors

1990 1991 1991
1969 Cross-validation 1990 Cross-veldeUon Cross-valldation 1991

Eqton or 1969 eluaUon Ecution of 1989 equation of 1990 equation Equation
R SE R SE R SE R SE R SE RSE

.188 .756 .315 .925 .352 .901 .461 1.01 .475 .958 .482 .940
III



102

The multiple correlation coefficients for the Classes of 1990
and 1991 are typical for prediction models as discussed In the review
of literature. The multiple correlation coefficient for the Class of
1989 Is extremely low, which may be explained by the restriction of
range of GRADE. Table 21 shows the steady Increase of the
correlations of ALG and TRIG with GRADE, as discussed previously.
Interestingly, the multiple correlation coefficients for the 1989
prediction equation applied to the 1990 and 1991 data are similar to
those obtained from the least squares estimates. The degree of
similarity is emphasized with the shrinkage values which are listed
in Table 22.

Table 22
Will inqham Model Cross-validation Shrinkage Values

Shrinkage( 1990,1989) - .352- .315 - .037
Shrinkage( 1991,1989) - .482 - .461 -. 021
Shrinkage( 1991,1990) -. 482 - .475 -. 007

Table 22 shows that all the shrinkage values are below the
critical value of 0.10. Thus, each of the prediction equations provide
an acceptable level of consistency In prediction. The apparent change
of the accuracy In the prediction over the years, I.e., the Increase of
& may not be due primarily to Improved estimates of the prediction
parameters. While it is true that the 1991 prediction equation
explains more of the variance In the 1991 data than the 1989 equation
explained in the 1989 data, the 1989 prediction equation explains
nearly the same amount of the variance of the 1991 data as did the
1991 equation. The least squares estimates In the 1991 prediction
equation explain the maximum amount of the variance In the final
course grades that predictor variables can explain for the 1991 data.
This supports the suspicion that the low level of prediction of the
1989 prediction equation of the 1989 data may be more a function of
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the restriction of range in GRADE rather than capability of the
variables ALG and TRIG to predict GRADE.

Summary of Willingham Model Validity

Overall, the Willingham mciel of placement seems to be valid
in that the instruments producing the scores are acceptably reliable,
produce reasonable correlations with final course grades in calculus,
and show stable levels of accuracy of prediction. The predictive
validity for the Willlngham model was low for the Classes of 1989
and 1990, but the evidence pointed to a changing environment where
the policy of assigning grades became more restrictive, which
affected the number of unsuccessful grades assigned. It was seen
that as the grade Inflation was reduced, the restriction or range on
GRADE decreased, Increasing the accuracy of prediction. Therefore,
efficiencies of placements from the Willingham model may
reasonably be compared to the Cognitive and other empirical models.
The first method of comparison used hit-and-miss tables.

Cognitive and Willingham Models Hit-and-Miss Table Comgarlsons.

The hit-and-miss tables for each class, based on both models,
were constructed from hypothetical placements accomplished in
accordance with the methods of Appenzellar and Kelley (1983). These
methods required that Kelley Tables (Appendix D) be constructed to
develop a set of candidate cutoff values to be used for the
hypothetical placements. The following guidelines were used to
suggest possible cutoff values of the Composite Score (the predicted
final course grade from the Cognitive or Willingham model regression
equation.
1. The Expected Composite Score for those students with a Final
Course Grade of 2.00.
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2. The Composite Score for those students with an Expected Final
Course Grade of 2.00.
3. The Composite Score for which the percentages of errors of
students In each academic performance category (Satisfactory or
Unsatisfactory), were most nearly equal.
4. The Composite Score for which the overall percentages of errors
were most nearly equal.
5. The Composite Score that would have cut off, or held back,
approximately the same number of students as were In the
Unsatisfactory performance category.
6. The Composite Score that would have maximized the overall
accuracy of placement.

Table 23 contains the candidate cutoff Composite Scores from
applying the six guidelines to the various classes of cadets.

Table 23
Candidate Composite Score Cutoffs by Guideline, Class, and Placement

Model
__uid

Class/Model 1 2 3 4 5 6
1989/Willingham 2.88 2.00 2.90 2.60 2.57 2.50
1990/Willinaham 2.46 2.00 2.40 2.10 2.10 1.40
1991/Willingham 2.36 2.00 2.30 1.90 1.87 1.50
1989/Cognitive 2.86 2.00 2.80 2.50 2.53 2.40
1990/Cognitive 2.45 2.00 2.00 2.10 2.06 1.40
1991/Cognitive 2.35 2.00 2.30 1.90 1.89 1.30
=191a/Coanittve ,2.31 2.00 2.20 1.90 1.86 1.30 _

N& The Cla of 1991 without hand-placed cadet,

A Composite Score of 2.00 was selected as the cutoff score to
perform the hypothetical placements for all placement models for
each class of cadets. This score was selected because It Is the
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lowest predicted final course grade considered successful. Also, a
Composite Score of 2.00 is close to other Composite Scores which
produce placements which will give about the same number of overall
errors, i.e., too high and too low, and that cut off the same number of
cadets which were observed to be In the unsuccessful category. Thus,
2.00 may be considered a satisfying cutoff from both theoretical
aspects and empirical evidence. The other candidate cutoff
Composite Scores were considered practically infeasible.

The cutoff 2.00 was used to perform hypothetical placements
for each class. These placements were in turn analyzed in terms of
the number of hits (correct placements) and misses (incorrect
placements) according to the framework established in Table 4 in the
Methodology Chapter. Table 4 is reproduced here for ease of
interpreting the results. Table 24 displays the individual hit-and-
miss tables for each class by placement model. The total number of
hits and misses are summarized In Table 25.

Table 4
General Hit-and-Miss Table Interpretation

Actual Placement
Hypothetical Long Sequence Short Sequence
Placement Performance Performance

_U_ Sb U S
Long Sequence Correct@ Unknown Correct Incorrect

Short Sequence Incorrect Unknown Incorrect Correct
Noe 8 Unsatlsfactory observed grade in calculus b Satisfactory observed grade In
calculus. C Correctness of hypothetical placement.

Table 25 Indicates that the Willingham model consistently
produced more correct placements than the Cognitive model.
However, the actual differences between the numbers (and percents)
of hits, 0 (0), 5 (0.79), and 8 (1.19) for the Classes of 1989, 1990,
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Table 24
Individual Hit-and-Miss Tables by Placement Model and Class

Cognitive Model Actual Placement
Class of 1989 Long Seq. Short Seg.

Performance Performance
HUpothetical Placement U S U S

Long Sequence 0 0 0 0
Short Sequence 4 117 7 454

Cognitive Model Actual Placement
Class of 1990 Long Seq. Short Seq.

Performance Performance
Hupothetical Placement U S U S

Long Sequence a 32 3 12
Short Sequence 14 69 48 506

Cognitive Model Actual Placement
Class of 1991 Long Seq. Short Seq.

Performance Performance
HUpothetical Placement U S U S

Long Sequence 42 71 8 22
Short Sequence 18nw 54 35 492

Cognitive Model Actual Placement
Class of 1991 Long Seq. Short Seq.

Reduced Performance Performance
H pothetical Placement U S U I

Long Sequence 40 67 10 19
Short Sequence 15 39 301 4

Willingham Model Actual Placement
Class of 1989 Long Seq. Short Seq.

Performance Performance
Hypothetical Placement U S U S

Long Sequence 0 0 0 0
Short Sequence 4 117 7 454
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Wlllingham Model Actual Placement
Class of 1990 Long Seq. Short Seq.

Performance Performance
Hupothetical Placement U S U S

Long Sequence 7 31 1I 4
Short Sequence 15 70 50 514

Willingham Model Actual Placement

Class of 1991 Long Seg. Short Seq.
Perfnrmance Performance

HUpothetical Placement - U I S U S
Long Sequeace 45 72 7 16

Short Sequence 15 53 36 4918

Table 25
Summary of Hit-and-Miss Tables

Hit Miss Unknown
Class Model n (M) n (9) n (s)

Cognitive 454 (78.0) 11 (1.9) 117 (20.1)
1989 Willingham 454(78.0) 11 (1.9) 117 (20.1)

SOP 458(78.7) 7 (1.2) 117 (20.1)
Cognitive 517(74.7) 74 (10.7) 101 (14.6)

1990 Willingham 522(75.4) 69 (10.0) 101 (14.6)
SOP 540 (78.0) 51 (7.9) 101 (14.6)
Cognitive 542 (73.0) 75 (10.1) 125 (16.8)

1991 Willingham 550(741) 67 (9.0) 125 (16.8)
Computera 574(77.4) 43 (5.8) 125 (16.8)
Cognitive
Reduced 454(72.8) 64 (10.3) 106 (17.0)

1991
Computerb
Reduced 478 (76.6) 40 (6.4) 106 (17.0)

Notl. 'Computerized model hit-end-miss performance. b Computerized model hit-end-
miss performance with hand-placed cadets removed.

and 1991 respectively, were considered negligible by this researcher
because of the small magnitudes. Generalized E-tests were
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performed to gain a consensus of the results of the hit-and-miss
table comparisons.

Coanitive and Willingham Models Generalized F-Test Comparisons

Generalized E-tests were performed using data from the ANOVA
tables from the Cognitive and Willingham models' regressions to test
the following hypothesis:

H4.3: In Equation 2, P= P2, P3= P4, and p5- 0.

A significant E value was Interpreted as evidence indicating that H43
should be rejected and that the Cognitive model Is a more efficient
prediction model than the Willingham model. Otherwise, H4.3 could
not be rejected, meaning that the Willingham model is as efficient a
prediction mode) as the Cognitive model. The results of the
generalized E-tests are presented In Table 26.

Each of the generalized E-tests was significant thus hypothesis
H4.3 should be rejected; that Is, that P I P2, P3 * P4, and P5 a 0 for
all three classes. While the generalized E-test Implies that the
Cognitive model consistently explained more of the variance in the
final calculus grades for each of the classes, one may notice that the
practical Improvement Is small. The practical Improvement Is
demonstrated by the differences 2.17X, 1.542, and 1.65X for the
Classes of 1989, 1990, and 1991 respectively. It is likely that the
differences were statistically significant because of the large
number of degrees of freedom In the regressions.

Summary of Cognitive and Willingham Models Comoarison

The results of the comparisons between the Cognitive and
Willingham models were mixed. The hit-and-miss tables showed that

----- -----
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the WIll Ingham model consistently produced more correct placements,
with an average increase of 4.3 (0.6%). The generalized E-tests,
however, showed that the Cognitive model consistently produced more
accurate predictions of final course grade, with an average increase
of 1.8X more of the variance in the final calculus grades explained.
However, there Is little practical difference between the efficiencies
of the two models using either measure since the magnitudes of the
differences In the number of correct placements and amount of
variance explained with the prediction equations are so small.

Table 26
Cognitive vs. Willingham Models Generalized F-Tests Analysis of

Variance Tables
Residual
Sum of General

Class 1odel DE Souares a2 E E
1989 Cognitive 576 323.4068 0.0571 6.976 0.0001 4.415**

Willingham 579 330.8437 0.0354 10.628 0.0001

1990 Cognitive 686 549.7586 0.1392 22.179 0.0001 4.068**
Willingham 689 559.5400 0.1238 48.695 0.0001

1991 Cognitive 736 639.1808 0.2485 48.686 0.0001 5.399**
Willingham 739 653.2467 0.2320 111.624 0.0001

ft.< 0.01

This last section showed that the two learning theory based
placement models were, In general, equally effective. In the next two
sections, the Cognitive model will be compared with the two
empirical placement models used by DFMS to perform the actual
placements for the Classes in this study.
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Cognitive and SOP Models Comparison

The Cognitive model was compared with the SOP model using
the Classes of 1989 and 1990; the Class of 1991 was not used since
those cadets were placed using the Computerized Placement model.
The comparisons were accomplished with hit-and-miss tables and
generalized E-tests. The hit-and-miss tables were constructed from
the hypothetical placements using the Cognitive model, as well as the
observed placements actually performed by the SOP model. The total
number of hits and misses was extracted from these tables and
compared. The number of hits for the Cognitive model was found
using the guidelines established In Table 4; that Is, the sum of the
number of cadets in the categories denoted as correct. The number of
hits for the SOP model was found by summing the number of cadets
who were placed Into the long sequence and were unsuccessful in
calculus and the number of cadets who were placed Into the short
sequence and were successful In calculus. The individual hit-and-
miss tables were presented In Table 24 and summarized In Table 25.
The portion of Table 25 relevant to the Cognitive and SOP models
comparison was extracted and displayed In Table 27.

Table 27 reports modest increases In efficiencies by the SOP
model over the Cognitive model, with increases of 4 (0.79) and 23
(3.39) hits for the Classes of 1989 and 1990 respectively. While 0.7s
Increase In efficiency is not practically significant, the 3.3%
Improvement may be considered practically significant. It may be
there Is little difference, In terms of number of hits-and-misses of
placements between the placement models when there will be few
unsuccessful students. Under conditions where there will likely be
nearly I 0% unsuccessful cadets, the SOP model may be more efficient.
However, The effects of the large number of "Unknowns" In the
Cognitive model hit-and-miss tables are greater than the observed
differences, so the results are Inconclusive.
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Table 27
Cognitive vs. SOP Models Hit-and-Miss Tables

Hit Miss Unknown
Class Model n (%) n (%) n (M)

Cognitive 454(78.0) 11 (1.9) 117 (20.11
1989 SOP 458(78.7) 7 (1.2) 117 (20.1)

Cognitive 517(74.7) 74 (10.7) 101 (14.6)
1990 SOP 540(78.0) 51 (7.9) 101 (14.6)

This section showed that one of the empirical placement
models tended to be more efficient than the Cognitive model. It
remains to be seen If the other empirical placement model does as
well. The next section reports the comparison of the empirically
based Computerized Placement model with the Cognitive model.

Cognitive and Computerized Models Comoarison

The comparison between the Cognitive and Computerized
models used a generalized E-test and hit-and-miss tables. These
procedures were applied only to the Class of 1991, since that class
was placed using the Computerized model. The whole Class of 1991
was not used for the comparison since there were a large number of
cadets who were hand-placed, i.e., not placed in accordance with the
Computerized model. Thus, 118 hand-placed cadets were removed
from the analysis.

Cognitive and Comouterized Models Hit-and-Miss Table Comparison.

As before, the hit-and-miss table was constructed from a
hypothetical placement based on the methods of Appenzellar and
Kelley (1983). The Kelley Tables (Appendix D) were developed In
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order to obtain a set of candidate cutoff Composite Scores (see Table
23). The Composite Scores were the Expected Final Calculus Grades
derived from applying Equation 3 to the reduced Class of 1991.
Consistent with the previous analyses, the Composite Score of 2.00
was selected to perform the hypothetical placement. An Individual
hit-and-miss table was constructed (see Table 24), for the Cognitive
model, which was summarized In Table 28. The Computerized model
was used to perform the actual placement, and the number of hits and
misses was computed In the same way as was done for the SOP hit-
and-miss tables. The total number of hits and misses was also
summarized In Table 28.

Table 28
Cognitive vs. Coin uterized Models Hit-and-Miss Table

Hit Miss Unknown
Class Model n (%) n (%) n (%)

Cognitive
Reduced 454 (72.8) 64 (10.3) 106 (17.0)

1991
Computerize

Reduced 478 (76.6) 40 (6.4) 106 (17.0)

Table 28 shows that the Computerized model produced more
correct placements than the Cognitive model with an Increase of 24
(3.8%) correct placements. The magnitude appears to be practically
significant. A generalized E-test was performed to gain a consensus
of the results of the hit-and-miss table comparison.

9
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Cognitive and Comouterized Models Generalized F-Tests Comoarison

The purpose of this section Is to report the results of

Investigating hypotheses:

H4.2.1: In Equation 6, P2=P3 'P6P7P8= O.

H4.2.2: If H42.1 is rejected, then some of the P2,P3,P6,P7,
and P8 In Equation 6 are equal to zero.

H4.2.3: In Equation 6, P2= P3, P6 = p7 , and P8 = 0,

where Equation 6 is defined In the paragraph below.
These hypotheses were designed to compare the efficiency of

the Cognitive and Computerized models with a generalized E-test and
associated 1-tests from two multiple linear regressions. These
regressions were computed for each model where the actual sequence
of the cadets from the reduced Class of 1991 were regressed onto the
appropriate set of predictors. The Computerized model regression
was of the form:

PASS -P10 + 0 lCALC2 + 02ALO + 13ACI + 04CALCI + 15TRI + 16CALC3 + c (5).
The Cognitive model used In this comparison represented an expanded
version of Equation 5, where the cognitive variables ALGA, ALGNA,
TRIGA, and TRIGNA replaced ALG and TRIG, with the cognitive variable
MATH added. Thus, the Augmented Cognitive regression model took
the form:

PASS "PO + PICALC2 + P2ALGA + p3ALGNA + P4ACI + p5CALCI +

P6TRIGA + P7TRIGNA +P8MATH + PgCALC3 + c (6).
The results of the generalized E-test is presented In Table 29, along
with the parameter estimates for the Augmented Cognitive model.

The analysis of variance table shows that both of the
regression equations provide a significant prediction of the
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successfulness of cadets in calculus. Hence, the evidence suggests
that hypothesis H4.2. 1 should be rejected; that In Equation 6, P2 0 P3 "
P6 * P7 * P8 0 0. The parameter estimates of the Augmented Cognitive
model Indicate that the analysis variables, ALGA and TRIGA, are the
only cognitive variables which were significant predictors of cadet
success in calculus. These data suggest that ALGA and TRIGA most
likely will be useful in defining a discriminant function. Thus, the
evidence appears to Indicate that, in Equation 6, P2 * 0 and P6 a 0.
Additionally, the evidence implies that P3 - 0, P7 0 0, and P8 = 0.

Finally, the observed E value from the generalized E-test,
3.122, must be compared with E(t = 0.05, 3, 614) which is about 2.62.
Thus, the hypothesis, H4.2.3, should be rejected; i.e., in Equation 6,
P2 ;" P3, P6 1 P7, and P8 * 0. That is, the Augmented Cognitive model
discriminated between the successful and unsuccessful groups of
cadets significantly better than the less complicated Computerized
model.

The results of this section were mixed. The evidence showed
that while the hit-and-miss table results favored the efficiency of
the Computerized model, the generalized E-test and 1-tests supported
the efficiency of the Cognitive model. Regression Equation 6
Indicated that the Computerized model should be augmented with
analysis cognitive variables in order to improve the discrimination
between successful and unsuccessful cadets in calculus. The other
cognitive variables did not seem to improve the discrimination.
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Table 29
Cognitive vs. Computerized Models Generalized F-Tests Analysis of

Variance Table
Residual
Sum of General

Model D S E2  E D2F E
Augmented 614 64.0368 0.2049 17.578 0.0001 3.122*
Computerized 617 65.0137 0.1927 24.553 0.0001

Parameter Estimates for Augmented Cogniltve Model Regression

Parameter Standard I. for HO:
Variable DE Estimate E=r~ Parameter - 0 rob l
Intercept 1 -0.0468 0.1838 -2.545 0.0112
CALC2 1 0.0038 0.0043 0.875 0.3819
ALGA 1 0.0313 0.0115 2.726 0.0066
ALGNA 1 0.0045 0.0032 1.426 0.1545
ACI 1 0.00031 0.000068 4.653 0.0001
CALC 1 1 0.0097 0.0021 4.659 0.0001
TRIGA 1 0.0547 0.0209 2.612 0.0092
TRIGNA 1 0.0033 0.0051 0.641 0.5220
CALC3 1 0.0103 0.0206 0.499 0.6182
MATH 1 -0.000043 0.00025 -0.169 0.8659

* . < 0.05



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Summary of Findings

This study developed a college mathematics placement model
based on cognitive science learning theory, Identified prediction
variables consistent with that model, validated the model using
historical placement data, and compared the effectiveness of the
model with other theoretical and empirical models. The Cognitive
Model of College Mathematics Placement proved to be a synthesis of
Skemp's (1979) notions about the schemas of successful mathematics
learners and Wilson's (1971) technology for assessing various
classifications of mathematical behavior.

Specifically, the Cognitive model is based on the assumption
that students' who possess schemas (a) with a high degree of
agreement, In terms of accuracy and completeness with the
mathematics content requirements of a prerequisite course; and (b)
which contain a large number of connections between the different
prerequisite schemas, were likely to succeed in learning the content
of a subsequent mathematics course. It was argued that novel, or
analysis level, mathematics test Items assess the degree of
connectedness of students' schemas and that non-analysis Items
assess the degree of accuracy and completeness of the prerequisite
schemas. The Cognitive model maintains that a placement test
composed of appropriate analysis and non-analysis Items, developed
from a conceptual analysis of the prerequisite and criterion courses,
Is useful to predict students' success or failure In the criterion
course. Other measures also were determined to enhance the

116
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assessment of the completeness of students' precalculus schemas;
the SAT-M and the ACT-M are two examples. The model calls for the
placement of students to be accomplished using a cutoff score
Identified with the methods of Appenzellar and Kelley (1983). The
validation of a cognitive placement system Is best achieved through
trait-treatment Interaction methods. Alternative methods require
Investigating various aspects of validity.

The Cognitive model was validated by applying the model to the
algebra and trigonometry placement tests response data from the U.S.
Air Force Academy graduating classes of 1989, 1990, and 1991.
Items on the algebra and trigonometry placement tests were
categorizeu 6ang the four major cognitive levels of Wilson's (1971)
Model oi ,dthematics Achievement. These responses formed sets of
either analysis or non-analysis Items, as determined by combining the
responses from seven expert judges on a construct validity
questionnaire. The judges classified six out of the 40 algebra
placement test Items and two out of the 20 trigonometry placement
test Items as analysis Items; these sets of Items formed two
"analysis" subtests. The remainder of the items were classified as
non-analysis items and constituted the two "non-analysis" subtests.
Confirmatory factor analyses were performed on the individual cadet
responses to empirically confirm the hypothesized analysis/non-
analysis structure using a Procrustes oblique rotation. It was
hypothesized that the factor pattern of the cadets' responses would
correlate with the analysis/non-analysis classification made by the
expert Judges. There was no evidence to support this hypothesis for
any of the classes.

The second form of validity Investigated was content validity.
The content validity of the cognitive subtests was Investigated using
a questionnaire containing each of the placement test items. Three
expert judges responded to a five-choice Likert item for each
placement test item. The Judges' responses assessed each item in
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terms of Its degree of appropriateness as a test of the content in the
precalculus course. There was strong evidence that the trigonometry
subtests and the algebra non-analysis subtest were content valid;
however, the judges disagreed about content validity of the algebra
analysis subtest. The disagreements did not concern the relevance of
the items to the precalculus syllabus, rather the disagreements
focused on whether the Items were adequate, good, or excellent test
items. All of the Items were considered to be at least adequate test
items for the content presented in the precalculus course.

The final form of validity Investigated was predictive validity.
The predictive validity of the cognitive subtests was investigated
using multiple linear regression, where the dependent variable was
final calculus grades (GRADE) and the Independent variables were the
algebra and trigonometry analysis subtest scores (ALGA and TRIGA),
the algebra and trigonometry non-analysis subtest scores (ALGNA and
TRIGNA), and the equipercentile-equated SAT-M and ACT-M scores
(MATH). It was hypothesized that each of these cognitive variables
would be a significant predictor of GRADE. The data Indicated that
different cognitive variables were significant predictors for
different classes. TRIGNA and MATH were the only cognitive
predictor variables significant at the u - 0.05 level in the Class of
1989; however, ALGNA, TRIGNA, and MATH were all significant in the
Class of 1990, and all of the cognitive variables were significant In
the Class of 199 1.

A major factor contributing to this phenomenon was the
restriction of range on GRADE. It was suspected that the Classes of
1989 and 1990 experienced grade inflation, because only 1.99 in the
Class of 1989 received less than a C grade in calculus while 10.5X
and 13.9X were unsuccessful in the Classes of 1990 and 1991,
respectively. This phenomenon apparently affected the corresponding
quality of the predictions, with the Cognitive model explaining 5.7%,
13.9%, and 24.9% of the variance In the calculus grades for the
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Classes of 1989, 1990, and 1991, respectively. The data also showed
that the accuracy of prediction was not stable over the three classes,
because the shrinkage value between the 1989 and 1991 prediction
equations was relatively large. The 1990 prediction equation applied
to the Class of 1991 data, however, provided an a value similar to the
least squares estimate for the same data.

The reliability of the analysis subtests was unacceptably low,
which almost certainly had an adverse Impact on the assessment of
the construct and predictive validity of the Cognitive model. The
KR-20 reliability coefficient was determined for each subtest for
each class and compared across the three classes. It was
hypothesized that there would be no significant differences between
the coefficients for comparable tests across the classes. The
evidence did not support the rejection of this hypothesis. The
reliability coefficients, on the average 0.33 and 0.21 for the
respective algebra and trigonometry analysis subtests, were very
low. This result was probably because of the small number of Items
in each of the subtests. Thus, the Spearman-Brown prophecy formula
was used to estimate the number of additional items that would be
needed to achieve a KR-20 coefficient of 0.70. Approximately 24
algebra analysis Items and 17 trigonometry analysis Items should be
added to achieve the target reliability coefficient. The low
reliability coefficients of the analysis subtests very likely limited
the capability of ALGA and TRIGA to predict GRADE. It is reasonable
to expect that the same effect also reduced the capability of the
confirmatory factor analysis to verify the construct validity.

Overall, the results of the validation study of the Cognitive
model applied to the placement tests at the Academy demonstrated
that there were: (a) acceptable support for the content validity of the
cognitive subscales; (b) marginal support for the predictive validity
of the cognitive variables with final calculus grades; (c) lack of
empirical support for the construct validity of the cognitive
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subscales; (d) unacceptable levels of reliability for the analysis
subscales.

Further research was conducted to determine the relative
effectiveness of the Cognitive model compared to another learning
theory-based placement model, the Willingham model, and two
empirical placement models, the SOP model and the Computerized
model. The comparisons were performed using hit-and-miss tables
and generalized E-tests.

Before the comparisons were made, the Willingham model was
validated with techniques similar to those used to validate the
Cognitive model. The Willingham model of placement was determined
to be valid because the total algebra and trigonometry placement
tests were acceptably content valid and had reasonable levels of
reliability, produced moderate correlations with final course grades
In calculus, and showed stable accuracy of prediction. The predictive
validity for the Willingham model was low for the Classes of 1989
and 1990, as was also true for the Cognitive model.

Hit-and-miss tables were constructed after hypothetical
placements were performed using cutoff scores developed from the
methods of Appenzellar and Kelley (1983). A predicted final calculus
grade of 2.00 from each of the theory-based models was used as a
cutoff for the hypothetical placements. Those cadets with predicted
final calculus grades of at least 2.00 were hypothetically placed into
the short sequence, calculus only, while cadets with predicted final
calculus grades of less than 2.00 were hypothetically placed into the
long sequence, precalculus-calculus.

The number of hypothetical placement hits-and-misses were
determined according to the scheme described In Table 4. The number
of hits-and-misses for the empirical models was taken directly from
the data, as the Classes of 1989 and 1990 were actually placed using
the SOP model and the Class of 1991 was actually placed using the
Computerized model. The hit-and-miss tables demonstrated that both



121

the Willingham model and the empirical models consistently produced
more correct placements than did the Cognitive model; on the average,
43 (0.69) ind 17.0 (2.6%) respectively. However, the increase in the
number of correct placements was not considered practically
significant because it was so small.

The generalized E-tests consistently Indicated that the
Cognitive model fit the data better than did either the Willingham or
the Computerized models. While the Cognitive model was shown to
explain more of the variance in the data, significant at least at the

= 0.05 level, the actual increase of variance explained was on the
average 1.6%; thus, the practical Improvement provided by the
Cognitive model was questionable. This apparent contradiction was
explained by noting that the results of the analyses of the hIt-and-
miss tables possessed a substantial margin of error because of the
large number of placements classified into the *Unknown" category
(see Table 25). The results of the generalized F-tests may be closer
to reality since this technique did not depend on the classification of
the placements.

Conclusions

The findings of this research demonstrated that:
1. A Cognitive Model or College Mathematics Placement could

be developed from Skemp's cognitive science learning theory and
Wilson's Model of Mathematical Achievement.

2. Locally developed placement examinations are the best
source for analysis and non-analysis Cognitive model predictor
variables. The SAT-M and the ACT-M are two readily available
sources of Cognitive model predictor variables.

3. The Classes of 1989, 1990, and 1991 at the U.S. Air Force
Academy were In transition with respect to placement and grading
policies. The Class of 1989 experienced severe grade Inflation In the
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calculus course, which at least partially was corrected in the other
two classes. Additionally, significant numbers of cadets were placed
into the precalculus-calculus sequences by procedures other than
those described by departmental standard operating procedures.
These two conditions had a strong impact on the results of the study.

4. For the Classes of 1989, 1990, and 1991 at the U.S. Air
Force Academy, the Cognitive model was at best a marginally valid
placement system. The cognitive subscales were content valid but
too short to be reliable. In addition, there was no empirical support
for the cognitive classifications of the placement test items based on
expert opinions. As was to be expected, the predictive validity of the
Cognitive model Increased as the number of cadets unsuccessful in
calculus Increased. Low predictive validity for the Class of 1989,
marginal predictive validity for the Class of 1990, and acceptable
predictive validity for the Class of 1991 were observed.

5. Different sets of cognitive variables were significant
predictors of final calculus grades for the classes. The number of
significant cognitive predictors increased with the number of
unsuccessful calculus cadets. For example, only TRIGNA and MATH
were significant for the Class of 1989, while all the cognitive
variables were significant for the Class of 1991.

6. For the Classes of 1989, 1990, and 1991 at the U.S. Air
Force Academy, the Willingham model was an acceptably valid
placement system. All the Willingham model variables were
significant predictors of the final calculus grades. The Willingham
model yielded trends In the predictive validity similar to those found
with the Cognitive model.

7. In practical terms, the various placement models displayed
about the same levels of effectiveness. The Willingham, SOP, and the
Computerized placement models consistently produced a small
number of more correct placements, but the Cognitive model
consistently provided a statistically significant better fit to final
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calculus grades. The results favoring the Cognitive model are likely
to be more realistic since there was a substantial margin for error in
determining the number of correct placements due to the large
number of placements that were unable to be classified as either
correct or incorrect.

Limitations

Several limitations on the study restrict the generalizabilIty
and Interpretation of the findings. These limitations are listed
below.

1. The subjects in this study represented a highly select group
of college freshmen. They hailed from all 52 states and survived a
rigorous selection process which required both high prior academic
achievement, high academic aptitude, and high military officer
potential. Extreme caution should be exercised In generalizing the
empirical results found In the study to other populations.

2. The extremely low reliability of the very short analysis
subscales was suspected to account for the lack of evidence
supporting the validity of the Cognitive model. Replication of this
study using tests with larger proportions of analysis items, with
corresponding increases in reliability, might produce different
results.

3. The findings of the hit-and-miss tables analyses have a
substantial margin for error, as the placement correctness or
Incorrectness for a significant portion of the hypothetically-placed
cadets was unknown. These results should be Interpreted cautiously
given the small differences between the number of hits found for the
various models.

4. The results must be considered In the context of a changing
environment, since the percentage of cadets unsuccessful In calculus
dramatically increased as the percentage of students enrolled In the
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short and long sequences increased (no causality intended). That is to
say, attempting a cross-validation in a fluid environment Is not
conducive to clear assessments.

Implications

The conclusions of this study imply that It Is possible to
develop alternative rationales for a college mathematics placement
system based on various theories of learning. These systems can be
logically consistent, reflect the goals and objectives of the college or
university, and may be reasonably validated using historical
placement data

Colleges and universities can expect benefits from using the
information about the cognitive characteristics of their placement
tests. The Cognitive model precisely uses these characteristics. The
main benefit Is the possibility to Improve predicting the success of
freshmen mathematics students. Other benefits may be forthcoming
from the conceptual analysis of the target mathematics sequence.
Placement tests may be realigned to reflect the critical cognitive and
content requirements of the sequence, which will probably increase
the accuracy of predicting the success of freshmen mathematics
students. In addition, Inconsistencies between intended and observed
sequence objectives may be Identified and corrected.

Recommendations

Recommendations are provided to researchers inclined to
replicate or follow-up this study. Other recommendations are
included which pertain to the U. S. Air Force Academy mathematics
placement system.

1. Construct the battery of placement examinations In strict
accordance with the Cognitive Model of College Mathematics
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Placement, beginning with the conceptual analysis of the course
sequence and continuing to the cross-validation of the model. A
particular focus should be to Include a sufficient number of Items on
each cognitive subtest to produce an acceptable reliability
coefficient.

2. The Cognitive model may be applicable with other sequences
in mathematics and at different levels. Efforts should be made to
validate the model in other settings.

3. The present model explicitly excluded use of measures of
affective and social domains of behavior to predict achievement.
However, the theory from which the model was developed Is not so
constrained; hence the model should be expanded to include affective
and social variables as predictors.

4. The context of the present model was mathematics;
however, the theory from which the model was developed Is not
limited to mathematics. Thus the usefulness of the model in other
academic, business, industrial, or military areas should be
Investigated. This last recommendation seems most appropriate in
settings where the education costs and likelihood of retraining are
both high.

The findings or this study also suggest specific
recommendations concerning the current placement system, the
Computerized Placement Model, used by the Department of
Mathematical Sciences (DFMS) at the U. S. Air Force Academy. DFMS
should consider: (a) revising the algebra and trigonometry placement
examinations to Include more analysis Items; and (b) expanding the
Computerized Placement Model to include the analysis and
trigonometry subscale scores as predictor variables.
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Precalculus - Calculus I Decision

IF ACTION

ALG 1 14 Place In Precalculus

15 ALG 19 Scan each record for "something very
positive" to indicate Calculus I placement,
else place in Precalculus.

E amgJ.s: (I) CALCI 13
(1) Math ACT 131
(lit) Math SAT 2 650
(iv) ACI 1 3300
(v) TRIG 15

20 K ALG 1 22 Scan each record for "something negative" to
indicate Precalculus placement, else place
in Calculus I.

ExamgwJ.: (1) TRIGtl
(ii) Math ACT 26
(11) Math SAT 1600
(iv) ACI 1 2850

ALG 2 23 Essentially automatic placement into
Calculus I or higher ( based on CALCI
scores). Consider Prep School
recommendations where appropriate.

Scan for very low TRIG (i.e., TRIG 1 9).
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Mathematics Education
EDB 406
The University of Texas at Austin
Austin, Texas 78712

Dear Participant,

Thank you for agreeing to participate In the Placement
Examination Study. Data from this questionnaire will provide
information about the levels of cognitive behaviors required by the 60
items of a college placement examination for a pre-calculus course.
The examination Is currently used to place college freshmen into
Pre-Calculus Mathematics or Differential Calculus.

Each examination item Is placed on a separate page along with
two questionnaire questions. Please Ignore the first question.
The second question asks you to classify the Items Into the four
general categories of mathematical behavior as developed In the
NLSMA study (Romberg & WIlson, 1969) and extended by Wilson ( 1971)
In his model of Mathematics Achievement. The four levels of
mathematics behaviors are computation, comprehension, application,
and analysis.

Classification guidelines are provided on the following two
pages. The guidelines consist of a definition and an example for each
of the four behaviors. As you know, the classification of the items
depends on the previous experience of the students. Please make your
classifications assuming that the Items are given to typical
college hound high school graduates

Please mall the completed questionnaire back to me before
19 Oecember 198 Do not hesitate to call me with questions

concerning this questionnaire. My office phone number is 471-3747.
Finally, you are requested to protect the Items on the questionnaire
from release to the public as the examination Is still being used.

Sincerely,

Frank J. Swehosky
Principal Investigator
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REPLV 13
anm m. AFIT/CIS(Major Swehosky, (512) 471-3747)

int'c: Math 130 Placement Examination Study

ro DFMS( )

I. Thank you for agreeing to participate in the study of the Math 130 Placement
Examination. The questionnaire you are about to fill out will provide information about
how closely the examination items corresponds to the content of the Math 130, Pro-
Calculus Mathematics.

2. This packet contains the 60 items that have been used on the Algebra and
Trigonometry Placement Examinations for the years 1985 through 1987. Each item is
placed on a separate page along with the questionnaire questions. Please evaluate each item
using the criteria provided. Do not solve the test item unless it will help you to perform
the evaluation.

3. For each placement test item, the questionnaire asks two questions. The first
question asks for your opinion about how well the item tests content topics on the Math
130 syllabus. A syllabus is supplied for your benefit.

4. The second question relates to the mental demands made by the items on the recent
=h sbo autem who took the test You are asked to classify the items into general

categories of mathematical behavior. The behaviors are computation, comprehension,
application, and analysis. Classification guidelines are provided on the following two pages
to help you make this decision. The guidelines provide a definition and an example for each
of the four behaviors.

5. The classification of the items depends on the previous experience of the student
taking the examination. An item which is novel to a "typical" high school graduate may be
very routine to someone with prior college mathematics experience. Please make your
classification based on the assumption that the items were given to a bicaI cil=

6. Please return the completed packet to Lt Col Tom Curry no later tha
5 De mber 1988. You may also address any questions concerning this questionnaire
to Lt Col Curry or Major Frank Swehosky.

Frank J. Swehosky, Major, USAF
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Guidelines for Classifying Items by Cognitive Level

1. Comptuatin: Items designed to require straightforward
manipulation of problem elements according to rules the subjects
presumably have learned. Emphasis Is upon performing operations,
not upon deciding which operations are appropriate. (Rm&r , Wilson.
1969, 39 -40)

Example: Solve y2 - 3y - I8

a. y=6ory=-3 b. y=6ory-3
c. y--6ory-3 d. y--6ory--3
e. There are no real solutions

This item is a computation item because the solution demands the
student to either factor the equation or to use the quadratic equation.
Both of these two procedures are usually well practiced by high
school graduates.

2. Comprehension: Items designed to require either recall of
concepts and generalizations or transformation of problem elements
from one mode to another. Emphasis Is upon demonstrating
understanding of concepts and their relationships, not upon using
concepts to produce a solution.

Example: If f(x)-2x +1 and g(x) - 3x - 1, then f(g(x)) -:

a. 6x- I b. 6x-2 c. x-2
d. 5x e. 6x 2 x-i
(Adapted from College Entrance ExamlnaUon Board, 1970, p. 54.)

This Is a comprehension Item because It requires an understanding of
the concept of function composition. Notice that for a calculus
student, this Item may represent a computation Item. Thus, It Is
Important to remember your target population.
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3. Agg.iati.0: Items designed to require (1) recall of relevant
knowledge, (2) selection of appropriate operations, and (3)
performance of the operations. Items are of a routine nature
requiring the subject to use concepts in a specific context and in a
way he has presumably practiced.

Example: A runner is to compete in a 26 mile marathon. What
must the runner's average pace be in order to complete the race
In four hours?

a. 4 mph b. 26 mph c. 6.2 mph d. 6.5 mph
e. There is not enough Information to compute the average
pace.

This Is an application Item because it Is most likely a routine
problem which requires the student to apply the relationship between
the concepts of distance, rate, and time.

4. Anays: Items designed to require a non-routine application of
concepts.

Example: Find the /argestvalue for x which satisfies the
equation 2(8x) * 4(8-x) - 9 =0.

31 2 2 3a-. ~ . e. 4
(Wilson et al., 1968, p. 190)

This Is an analysis Item because of the nonroutine nature of the
problem. An understanding of exponents and equation solving are
necessary. Additionally, the student must exercise a careful reading
of the question In order to find the correct solution. These activities,
taken together, Is most likely not a practiced skill for high school
graduate.
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[Algebra Non-analysis Item Number 1]

Question 1. 1984B

I4K 1
if 4 K 5I , then k equals

I
a.-16 b.-4 c.1- d. 44

e. None of the above

1) Choose the statement below which best describes the item with

regards to the content topics In the Math 130 Syllabus.

The Item above

() does not test a content topic In the syllabus.
) is a poor test Item of a content topic in the syllabus.

() is an adequate test item of a content topic in the syllabus.
() is a good test item of a content topic in the syllabus.
() is an excellent test Item of a content topic In the
syllabus..

2) Choose the category of mathematics behavior associated with this

item.

() Computation () Comprehension ( ) Application () Analysis



135

[Algebra Analysis Item Number 15]

Question 15.19840

If xy = 1 , which of the following statements is =rue?

a. When x>l,then y<O. b. When x>l ,then y>l.

c. When 0 <x <I, then y <O d. As x increases, y decreases.

e. As x increases, y increases.

1) Choose the statement below which best describes the item with

regards to the content topics in the Math 130 Syllabus.

The item above

() does not test a content topic in the syllabus.
() is a poor test Item of a content topic In the syllabus.
() is an adequate test Item of a content topic in the syllabus.
() is a good test item of a content topic in the syllabus.
( ) Is an excellent test Item of a content topic in the
syllabus..

2) Choose the category of mathematics behavior associated with this

item.

() Computation () Comprehension () Application () Analysis
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[Trigonometry Non-analysis Item Number 1]

Question 51.19848

Use the above figure to solve problems 51 and 52. Select answers
from the following list:

z bX dx
a. b2i C. z d. e. None of the abovey y z

51. tan 0 =

1) Choose the statement below which best describes the Item with

regards to the content topics in the Math 130 Syllabus.

The Item above

( ) does not test a content topic in the syllabus.
( ) Is a poor test Item of a content topic In the syllabus.
( ) is an adequate test item of a content topic in the syllabus.
() Is a good test Item of a content topic In the syllabus.
() Is an excellent test item of a content topic in the
syllabus..

2) Choose the category of mathematics behavior associated with this

item.

() Computation () Comprehension () Application () Analysis
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[Trigonometry Analysis Item Number 13]

Question 63.1984B

If sln z = cos z and if 180" 1 z 1 270" then what Is z?

a. I b. 45" c. 210* d. 245"

e. None of the above.

1) Choose the statement below which best describes the Item with

regards to the content topics in the Math 130 Syllabus.

The item above

() does not test a content topic in the syllabus.
() is a poor test item of a content topic in the syllabus.
() is an adequate test item of a content topic in the syllabus.
() is a good test item of a content topic In the syllabus.
() is an excellent test Item of a content topic In the
syllabus..

2) Choose the category of mathematics behavior associated with this
Item.

( ) Computation () Comprehension () Application ( ) Analysis
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TABLE C. I
Validity Questionnalre. Algebra Item Responses

Modal Modal Average
Cognitive 9 Content 9 Likert

L=e Classification Ag.reeme,.t Classification Agemn Score

1 2 57 4 67 3.7
2 1 86 4 67 3.7
3 2 86 4 67 4.3
4 1 71 4 67 4.3
5 2 86 NMb 0 4.3
6 4 43 4 67 4.0
7 2 57 4 67 4.3
8 1 86 4 67 3.7
9 2 86 4 67 4.3
10 3 86 4 67 4.3
11 4 57 4 67 3.7
12 1 100 4 67 3.3
13 1 86 4 67 4.3
14 1 71 4 67 3.7
15 4 86 4 67 2.3
16 1 100 4 67 4.3
17 1 86 4 67 4.3
18 4 86 4 67 4.3
19 2 100 5 67 4.7
20 3 86 4 100 4.0
21 1 71 4 100 4.0
22 1 100 4 67 4.3
23 1 86 4 100 4.0
24 1 71 4 67 4.3
25 2 86 5 67 4.7
26 4 43c NM 0 40
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Table C. I (Continued)
Validity Questionnaire: Algebra Item Responses

Modal Modal Average
Cognitive 9 Content X Likert

Ite Classification Agre,.ment Classification, Agre.eJO.e, Score

27 2 57 4 67 4.3
28 2 43 4 100 4.0
29 2 43 4 67 4.3
30 3 86 4 67 4.3
31 2 86 4 100 40
32 1 100 NM 0 4.0
33 2 43 4 100 4.0
34 3 43 1 67 2.3
35 2 43 NI 0 4.0
36 2 43 4 67 43
37 1 71 4 100 4.0
38 1 86 3 67 3.3
39 4 57 NM 0 4.0
40 3 86 4 100 4.0

Totals
Average 73.7 65.0 4.0
Analysis Subscale 61.9 33.3 3.7
Non-analaysis subscale 75.7 70.6 4.0
Nte. 8 The construct validity results are based on seven Judges and
the content validity results are based on three Judges. b No mode and
no agreement between the three Judges. c Three out of four
mathematics experts Judged the Item as analysis; true modal
classification was comprehension with 57% agreement.
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Table C.2
Validity Questionnaire Results: Trigonometry Items
Modal Modal Average

Cognitive X Content X Likert
1= C sc A Areement 
1 2 71 4 67 4.3
2 2 71 4 67 4.3
3 2 100 4 67 4.3
4 2 100 4 67 4.3
5 2 10O0 4 67 4.3

6 3 86 4 67 4.3
7 2 43 4 100 4.0
8 2 43 4 100 4.0
9 2 86 4 100 4.0
10 2 100 4 100 4.0
11 3 43 NIO 0 4.0
12 2 43 4 100 4.0
13 4 57 4 67 4.3
14 2 57 4 67 3.7
15 3 57 NM 0 4.0
16 2 71 4 100 4.0
17 2 71 3 67 3.3
18 2 43 4 100 4.0
19 4 29b 4 100 4.0
20 2 57 4 100 4.0

Ioal
Average 66.4 75.0 4.1
Analysis Subscale 43.0 83.5 4.2
Non-analysis Subscale 69.0 74.1 4.1
Note 8 No mode and no agreement between the three Judges. b Two out
of four mathematics experts Judged the Item as analysis; true modal
classification was comprehension with 57X agreement.
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Standards were set according to the method of Appenzellar and
Kelley (1983) for each class using both the Willingham and Cognitive
placement models. The following guidelines were used to suggest
possible cutoff values of the Composite Score:

1. The Expected Composite Score for those persons whose
course performance was Just minimally satisfactory, (i.e., whose
Final Calculus Grade was 2.00).

2. The Composite Score for those students with an Expected
Final Calculus Grade of 2.00. This value is constant, 2.00, since all
these regression equations can be shown to be:

Expected Final Calculus Grade - 1.00 Composite Score + 0.00.
3. The Composite Score for which the percentages of errors of

students In each category (satisfactory, unsatisfactory) were most
nearly equal.

4. The Composite Score for which the overall percentages of
errors were most nearly equal.

5. The Composite Score that would have cut off, or held back,
approximately the same number of students as were in the
Unsastisfactory (No Pass) performance group.

6. The Composite Score that would have maximized the overall
accuracy of placement.

Table 23 contains the candidate cutoff Composite Scores from
applying the six guidelines to the various classes of cadets.
Tables D.I through D.21 are examples of the Kelley Tables used to
support the guideline values which are In Table 23.
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Table D. 1
1989 Composite Score by final calculus grade: frequency

distributions and descriptive statistics, using a 4.0 GPA scale for
the composite scores computed with the Willingham model.

Final Course Grades in Calculus (0-4)
Composite Scores O(F) I(D) 2(C) 3(B) 4(A) Total

3.30-4.00 0 0 0 0 0 0
3.20-3.29 0 0 2 4 3 9
3.10-3.19 0 0 6 17 19 42
3.00-3.09 0 0 18 67 30 115
2.90-2.99 0 2 39 84 26 151
2.80-2.89 2 3 53 64 19 141
2.70-2.79 1 2 24 30 22 79
2.60-2.69 0 0 11 15 5 31
2.50-2.59 0 0 3 6 3 12
2.40-2.49 1 0 0 0 1 2
0.00-2.39 0 0 0 0 0 0

Total 4 7 156 287 128 582
Men Composite Score 12.70 2.83 2.88 2.92 2.94 2.91
StxbrdDeviatlon 10.16 0.08 0.13 0.14 0.16 0.14
Composite Score - 2.31 + 0.0088ALG + 0.032TRIG IR - 0.19
Mean Final Course Grade - 2.91 TStandard Deviation - 0.77

Ii
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Table D.2
1989 Composite Score by combined final calculus grade: frequency

distributions and descriptive statistics, using a 4.0 GPA scale for the
composite scores computed with the Wlllingham model.

Final Course Grades in Calculus
Composite No Pass Pass

Score F-D C-A Total
3.30-4.00 0 0 0
3.20-3.29 0 9 9
3.10-3.19 0 42 42
3.00-3.09 0 115 115
2.90-2.99 2 149 151
2.80-2.89 5 136 141
2.70-2.79 3 76 79
2.60-2.69 0 31 31
2.50-2.59 0 12 12
2.40-2.49 1 1 2
0.00-2.39 0 0 0

Total 11 571 582
Mean Composite Score 2.78 2.91 2.91
Stnd&rd Deviation 0.12 0.14 0.14
Composite Score = 2.31 + O.O088ALG + O.O32TRIG I R = 0.19
Mean Final Course Grade - 2.91 1 Standard Deviation = 0.77
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Table D.3
1989 Composite Scores using the Willingham model with possible

decision scores and corresponding accuracies of placement.
Cumulative Percent of Students In Overl Accuracy

Nmbers of Students Each Placement cte ofPlacement
Placement Unsat Sat Unsat Sat Accuracy No. of x or
Category D-F (N-11) A-C (N-571) D-F A-C Category Students Students'
2.90-up TooHigh 2 315 OK TooHigh 18 550OK TooHigh 2 0

Too Too Correct 324 56
below 2.9 OK 9 256 Low OK 82 45 Low Too Low 256 44
2.80-up Too High 7 451 OK Too High 64 79 OK Too High 7 1

Too Too Correct 455 78
below 2.80 OK 4 120 Low OK 36 21 Low Too Low 120 21
2.70-up Too High 10 527 OK Too High 91 92 OK Too High 10 2

Too Too Correct 528 91
below 2.7 K 1 44 Low OK 9 8 Low Too Low 44 8
2.60-up TooHigh 10 558 OK TooHigh 91 98 OK TooHigh 10 2

Too Too Correct 559 96
below 2.60 OK 1 13 Low OK 9 2 Low Too Low 13 2
2.50 - up Too High 10 570 OK Too High 91 100 OK Too High 10 2

Too Too Correct 571 98
below 2.5d OK 1 1 Low OK 9 0 Low Too Low 1 0
2.40-up TooHighll 571 OK TooHigh10 lOOOK TooHigh 11 2

Too Too Correct 571 98
below 2.40 OK 0 0 Low OK 0 0 Low Too Low 0 0

Expected Composite Score - 2.80 + .035 Final Course Grade r = 0. 19
Final Course Grade=2.00 = Expected Composite Score-2.88 SEE2=0. 14
Note. 1. Percentages may not sum to 100% because of rounding error.
2. Standard error of estimate.



147

Table D.4
1990 Composite Score by final calculus grade: frequency

distributions and descriptive statistics, using a 40 GPA scale for
the composite scores computed with the Wlllingham model.

Final Course Grades in Calculus (0-4)
Composite ScoresI O(F) I(D) 2(C) 3(B) 4(A) Total

3.50-4.00 0 0 0 0 0 0
3.40-3.49 0 0 0 0 1 1
3.30-3.39 0 0 0 1 3 4
3.20-3.29 0 0 0 2 3 5
3.10-3.19 0 0 5 6 6 17
3.00-3.09 0 0 4 13 10 27
2.90-2.99 1 0 10 19 13 43
2.80-2.89 0 0 13 29 15 57
2.70-2.79 0 5 17 25 12 59
2.60-2.69 6 2 28 39 9 84
2.50-2.59 1 6 37 28 7 79
2.40-2.49 2 6 41 20 11 80
2.30-2.39 4 6 36 20 6 72
2.20-2.29 4 4 21 9 5 43
2.10-2.19 2 10 23 8 5 48
2.00-2.09 3 3 16 7 1 30
1.90-1.99 1 1 5 5 2 14
1.80-1.89 1 2 5 5 1 14
1.70-1.79 0 0 3 3 0 6
1.60-1.69 0 3 4 1 0 8
1.50-1.59 0 0 0 0 0 0
1.40-1.49 0 0 1 0 0 1
0.00-1.39 0 0 0 0 0 0

Total 25 48 269 240 110 692
Mean Composite Score I 2.36 2.29 2.44 2.59 2.72 2.52
StanxrdDeviation 1 0.27 0.30 0.31 0.32 0.34 0.34
Composite Score - 1.18 + 0.044AL0 + O.027TRIO I R = 0.35
Mean Final Course rade = 2.52 1 Standrd Deviation = 0.96
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Table D.5
1990 Composite Score by combined final calculus grade: frequency

distributions and descriptive statistics, using a 4,0 GPA scale for the
composite scores computed with the Willingham model.

Final Course Grades in Calculus
Composite No Pass Pass

Score F-D C-A Total
3.50-4.00 0 0 0
3.40-3.49 0 1 1
3.30-3.39 0 4 4
3.20-3.29 0 5 5
3.10-3.19 0 17 17
3.00-3.09 0 27 27
2.90-2.99 1 42 43
2.80-2.89 0 57 57
2.70-2.79 5 54 59
2.60-2.69 8 76 84
2.50-2.59 7 72 79
2.40-2.49 8 72 80
2.30-2.39 10 62 72
2.20-2.29 8 35 43
2.10-2.19 12 36 48
2.00-2.09 6 24 30
1.90-1.99 2 12 14
1.80-1.89 3 11 14
1.70-1.79 0 6 6
1.60-1.69 3 5 8
1.50-1.59 0 0 0
1.40-1.49 0 1 1
0.00-1.39 0 0 0

Total 73 619 695
Mean Composite Score 2.31 2.55 2.52

twanrd Deviation 1 0.29 0,34 0.34
Composite Score - 1.18 + 0.04 ",LG + 0.027TRIG IR = 0.35
IMean Final Course Grade - 2.52 I Standard Deviation = 0.96
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Table D.6
1990 Composite Scores using the Willlngham model with possible

decision scores and corresponding accuracies of placement.
Cumulative Percent of Students In Overall Accuracy

Numbers of Students Each Placement catew _Of" Placement
Placement Unsat Sat Unsat Sat Accuracy No. of 9 of
Catsoory D-F (N-1 1) A-C (N-571) D-F A-C Category Students Students'
2.40- up Too High 29 427 OK Too High 40 69 0K Too High 29 4

Too Too Correct 471 68
below 2.4d OK 44 192 Low OK 60 31 Low Too Low 192 28
2.30- up Too High 39 489 OK Too High 53 79 OK Too High 39 6

Too Too Correct 523 76
below 2.30 OK 34 130 Low OK 47 21 Low Too Low 130 19
2.20-up Too High 47 524 OK Too High 64 85 OK Too High 47 7

Too Too Correct 550 79
below 2.20 OK 26 95 Low OK 36 15 Low Too Low 95 14
2.10 -up Too High 59 560 OK Too High 81 90 OK Too High 59 9

Too Too Correct 574 83
below 2.10 OK 14 59 Low OK 19 10 Low Too Low 59 9
2.00- up Too High 65 584 OK Too High 89 94 OK Too High 65 9

Too Too Correct 592 86
below 2.00 OK 8 35 Low OK 11 6 Low Too Low 35 5
1,90 - up Too High 67 596 0K Too High 92 96 OK Too High 67 10

Too Too Correct 602 87
below 1.90 OK 6 23 Low OK 8 4 Low Too Low 23 3
1,80 -up Too High 70 607 OK Too High 96 98 OK Too High 70 10

Too Too Correct 610 88
below 1.8d OK 3 12 Low OK 4 2 Low Too Low 12 2
1.70 - up Too High 70 613 OK Too High 96 99 OK Too High 70 10

Too Too Correct 616 89
below 1.70 OK 3 6 Low OK 4 1 Low TooLow 6 1
1.60 - up Too High 73 618 OK Too High100 100 OK Too High 73 11

Too Too Correct 618 89
below 1.64 OK 0 1 Low OK 0 0 Low Too Low 1 0
1.50 - up Too High 73 618 OK Too Highl00 100 OK Too High 73 11

Too Too Correct 618 89
below 1.50 OK 0 1 Low 0K 0 0 Low Too Low 1 0
1.40-up TooHigh 73 619 OK TooHigh100 100 0K TooHigh 73 11

Too Too Correct 619 89
below 1.0 OK 0 0 Low OK 0 0 Low Too Low 0 0
Expected Composite Score - 2.21 + 0.12 Final Course 6rade r - 0.35
Final Course 6rsde - 2.00 so Expected Composite Score - 2.46 SEE2 - 0.32
N&. 1. Percentages may not sum to 1002 because of rounding error. 2. Standard error of
estimate.
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Table D.7
1991 Composite Score by final calculus grade: frequency

distributions and descriptive statistics, using a 40 GPA scale for
the composite scores computed with the Willingham model.

Final Course Grades in Calculus (0-4)
Composite ScoresI O(F) I(D) 2(C) 3(B) 4(A) Total

3.50-4.00 0 0 0 1 6 7
3.40-3.49 0 0 1 3 11 15
3.30-3.39 0 0 1 8 7 16
3.20-3.29 1 0 4 5 4 14
3.10-3.19 0 0 8 13 18 39
3.00-3.09 0 0 3 17 9 29
2.90-2.99 2 0 12 22 9 45
2.80-2.89 1 0 12 15 14 42
2.70-2.79 0 1 20 18 8 47
2.60-2.69 1 2 16 24 5 48
2.50-2.59 3 3 25 32 4 67
2.40-2.49 2 8 26 12 5 53
2.30-2.39 4 2 24 16 2 48
2.20-2.29 4 6 24 12 6 52
2,10-2.19 1 2 24 13 3 43
2.00-2.09 1 7 13 7 9 37
1.90-1.99 6 5 12 6 2 31
1.80-1.89 4 3 11 5 4 27
1.70-1.79 4 4 17 4 1 30
1.60-1.69 3 2 6 1 1 13
1.50-1.59 4 0 6 2 2 14
1.40-1.49 2 2 2 2 0 8
1.30-1.39 4 3 2 0 0 9
1.20-1.29 1 1 1 0 0 3
0.00-1.19 2 2 1 0 0 5

Total 50 53 271 238 130 742
iMeanCompositeScore 1.97 2.03 2.35 2.62 2.80 2.47
Stanv'dDeyiation 0.50 0.43 0.44 0.42 0.52 0.52
Composite Score - 0.36 + 0.055ALG + 0.067TRIG I R - 0.48
Mean Final Course Grade - 2.47 1 Standard Deviation - 1.07
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Table D.8
1991 Composite Score by combined final calculus grade: frequency

distributions and descriptive statistics, using a 4.0 GPA scale for the
composite scores computed with the Willingham model.

Final Course Grades in Calculus
Composite No Pass Pass

Score F-D C-A Total
3.50-4.00 0 7 7
3 40-3.49 0 15 15
3.30-3.39 0 16 16
3.20-3.29 1 13 14
3.10-3.19 0 39 39
3.00-3.09 0 29 29
2.90-2.99 2 43 45
2.80-2.89 1 41 42
2.70-2.79 1 46 47
2.60-2.69 3 45 48
2.50-2.59 6 61 67
2.40-2.49 10 43 53
2.30-2.39 6 42 48
2.20-2.29 10 42 52
2.10-2.19 3 40 43
2.00-2.09 8 29 37
1.90-1.99 11 20 31
1.80-1.89 7 20 27
1.70-1.79 8 22 30
1.60-1.69 5 8 13
1.50-1.59 4 10 14
1.40-1.49 4 4 8
1.30-1.39 7 2 9
1.20-1.29 2 1 3
0.00-1.19 4 1 5

Total 103 639 742
.Meen Composite Score 2.00 2.54 2.47
Standard Deviatton 0.46 0.48 0.52
Com site Score - 0.36 + 0.055ALO + 0.067TRIO R - 0.48
Hew Final Course Oradl - 2.47 1 Standard Deviation - 1.07
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Table D.9
1991 Composite Scores using the Willingham model with possible

decision scores and corresponding accuracies of placement.
Cumulative Percent of Students In Overal Accuracy

Numbers of Students Each Placement Cat _ _ of Placement
Placement lUnsat sat LUnst Sat Accuracy No. of X of
CateQory D-F (N-1i) A-C (N-571) D-f A-C Category Students Students'
2.40-up ToolHigh24 398 OK TooHigh23 62 OK TooHigh 24 3

TOO TOO Correct 477 64
below 2.40 OK 79 241 Low OK 77 38 Low Too Low 241 32
2.30-up Too High 30 440 OK Too HIgh 29 69 OK TooHigh 30 4

TOO Too Correct 513 69
below 2.30 OK 73 199 Low OK 71 31 Low Too Low 199 27
2.20- up Too High 40 482 OK Too High 39 75 OK Too High 40 5

Too Too Correct 545 73
below 2.20 OK 63 157 Low OK 61 25 Low Too Low 157 21
2.10-up TooHigh 43 522 OK TooHigh 42 82 OK TooHigh 43 6

TOO Too Correct 582 78
below 2.1 OK 60 117 Low OK 58 18 Low Too Low 117 16
2.00- up Too High 51 551 OK Too High 50 86 OK Too High 51 7

Too Too Correct 603 81
below2.0( OK 52 88 Low OK 50 14 Low Too Low 88 12
1.90 - up Too High 62 571 OK Too High 60 89 OK Too High 62 8

Too Too Correct 612 82
below I.9( OK 41 68 Low OK 40 11 Low Too Low 68 9

1.80 - up Too High 69 591 OK Too High 67 92 OK Too High 69 9
TOO Too Correct 625 84

elow 1.80 OK 34 48 Low OK 33 8 Low Too Low 48 6
1.70 - up Too High 77 613 OK Too High 75 96 OK Too High 77 10

Too Too Correct 639 86
below 1.7 OK 26 26 Low OK 25 4 Low Too Low 26 4
1.60 - up Too High 82 621 OK Too High 80 97 OK Too High 82 11

Too Too Correct 642 87
below 1.60 OK 21 18 Low OK 20 3 Low Too Low 18 2
1.50 - up Too High 86 631 OK Too High 83 99 OK Too High 86 12

Too Too Correct 648 87
below 1.50 OK 17 8 Low OK 17 1 Low Too Low 8 I
1.40 - up Too High 90 635 OK Too High 87 99 OK Too High 90 12

Too Too Correct 648 87
below 1.40 OK 13 4 Low OK 13 1 Low Too Low 4 1
Exoected Composite Score - 1.89 + 0.23 Final Course rade r - 0.48
Final Course Orade - 2.00 so Expected Composite Score - 2.36 SEE 2 - 0.45
M& 1. Percentages may not sum to 1003 because of rounding error. 2. StWanlrd
error of estimate.
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Table D. 10
1989 Composite Score by final calculus grade: frequency

distributions and descriptive statistics, using a 4.0 GPA scale for
the composite scores computed with the Cognitive model.

Final Course Grades in Calculus (0-4)
Composite ScoresI O(F) I(D) 2(C) 3(B) 4(A) Total

3.50-4.00 0 0 0 0 0 0
3.40-3.49 0 0 0 1 0 1
3.30-3.39 0 0 2 5 1 8
3.20-3.29 0 0 0 7 16 23
3.10-3.19 0 0 13 26 21 60
3.00-3.09 0 1 18 60 23 102
2.90-2.99 0 2 28 61 13 104
2.80-2.89 1 1 33 59 21 115
2.70-2.79 0 0 36 39 23 98
2.60-2.69 I 2 15 20 9 47
2.50-2.59 1 1 9 8 0 19
2.40-2.49 1 0 2 1 1 5
0.00-2.39 0 0 0 0 0 0

Total 4 7 156 287 128 582
Mean Compite Score 2.64 2.81 2.85 2.92 2.96 2.91
StandardDeviation 10.17 0.20 0.17 0.17 0.20 0.18 1
Composite Scoe - -1.04 - .033ALGB + .O057ALGBNA + .059TR16A + .027TRI6NA + .0018MATHI
Mean Final Course Grade = 2.91 1 Standard Deviation = 0.77 R = 0.24
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Table D. 11
1989 Composite Score by combined final calculus grade: frequency

distributions and descriptive statistics, using a 4.0 GPA scale for the
composite scores computed with the Cognitive model.

Final Course Grades in Calculu.
Composite No Pass Pass

Score F-D C-A Total
3.50-400 0 0 0
3.40-3.49 0 1
3.30-3.39 0 8 8
3.20-3.29 0 23 23
3.10-3.19 0 60 60
3.00-3.09 1 101 102
2.90-2.99 2 102 104
2.80-2.89 2 113 115
2.70-2.79 0 98 98
2.60-2.69 3 44 47
2.50-2.59 2 17 19
2.40-2.49 1 4 5
0.00-2.39 0 0 0

Total 11 571 582
Mean Composite Score 2.75 2.91 2.91
Standard Deviation 0.20 0.18 0.18
Composite Score * -1.04 - .033AL-B + .0057AL6BNA .059TR16A + .027TRIGNA + .O018ATHI
Mean Final Course Orade = 2.91 1 Standard Deviation = 0.77 R = 0.24 1
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Table D. 12
1989 Composite Scores using the Cognitive model with possible

decision scores and corresponding accuracies of placement.
Cumulative Percent of Students In Overall Accuracy

Numbers of Students Each Placement Ca of Placement
Placement Unsat sat Unsat Sat Accuracy No. of T or
Cateaory D-F (N-I1) A-C (N-571) D-F A-C Category Students StudentsI
3.00 - up Too High 1 193 OK Too High 9 34 OK Too High 1 0

Too TOO Correct 203 35
below 3.0( OK 10 378 Low OK 91 66 Low Too Low 378 65
2.90 - up Too High 3 295 OK Too High 27 52 OK Too High 3 1

Too Too Correct 303 52
below 2.9( OK 8 276 Low OK 73 48 Low Too Low 276 47
2.80-up Too High 5 408 0K Too High 45 71 OK Too High 5 1

Too Too Correct 414 71
below 2.80 OK 6 163 Low OK 55 29 Low Too Low 163 28
2.70-up Too High 5 506 0K Too High 45 89 OK Too High 5 1

Too Too Correct 512 88
below 2.70 OK 6 65 Low OK 55 11 Low TooLow 65 11
2.60-up Too High 8 550 0K Too High 73 96 OK Too High 8 I

Too Too Correct 553 95
below 2.60 OK 3 21 Low OK 27 4 Low Too Low 21 4
2.50-up TooHigh 10 567 OK TooHigh 91 99 OK TooHigh 10 2

Too Too Correct 568 98
below 2.50 OK 1 4 Low OK 9 1 Low Too Low 4 1
2.40 - up Too High 11 571 0K Too HighlO0 100 OK Too High 11 2

Too Too Correct 571 98
below 2.4d OK 0 0 Low OK 0 0 Low Too Low 0 0
Expected Composite Score - 2.74 + .057 Final Course Orade r = 0.24
Final Course Oradl = 2.00 a* Expected Composite Score = 2.86 SEE2 = O. 18
Hft 1. Percentages may not sum to 100% because of rounding error. 2. Stadard
error of estimate.
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Table D. 13
1990 Composite Score by final calculus grade: frequency

distributions and descriptive statistics, using a 40 GPA scale for
the composite scores computed with the Cognitive model.

Final Course Grades in Calculus (0-4)
Composite ScoresI O(F) I(D) 2(C) 3(B) 4(A) Total

3.50-4.00 0 0 0 0 2 2
3.40-3.49 0 0 0 1 1 2
3.30-3.39 0 0 0 5 2 7
3.20-3.29 0 0 2 1 3 6
3.10-3.19 0 0 3 5 8 16
3.00-3.09 0 0 7 12 11 30
2.90-2.99 0 0 2 21 13 36
2.80-2.89 1 1 20 37 12 71
2.70-2.79 3 2 16 30 16 67
2.60-2.69 1 3 21 21 8 54
2.50-2.59 1 8 38 24 6 77
2.40-2.49 3 7 38 21 5 74
2.30-2.39 6 1 35 21 8 71
2.20-2.29 4 8 28 10 6 56
2.10-2.19 2 6 19 9 3 39
2.00-2.09 2 3 12 8 4 29
1.90-1.99 0 3 16 5 2 26
1.80-1.89 1 3 4 7 0 15
1.70-1.79 0 0 3 1 0 4
1.60-1.69 1 2 2 0 0 5
1.50-1.59 0 1 3 0 0 4
1.40-1.49 0 0 0 1 0 1
0.00-1.39 0 0 0 0 0 0

Total 25 48 273 240 111 692
MeanCompite Cre 2.34 2.28 2.42 2.61 2.74 2.52
Standard Deviation 0.28 0.30 0.32 0.34 0.36 .36
Composite Score .16 -.00012AL68 +.041AL68NA +.OI8TRI6A +.033TRI6NA +.0019MATHI
Mean Final Course Orads= 2.52 1 StandArd Deviation - 0.96 R = 0.37
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Table D. 14
1990 Composite Score by combined final calculus grade: frequency

distributions and descriptive statistics, using a 4.0 GPA scale for the
composite scores computed with the Cognitive model.

Final Course Grades in Calculus
Composite No Pass Pass

Score F-D C-A Total
3.50-4.00 0 2 2
3.40-3.49 0 2 2
3.30-3.39 0 7 7
3.20-3.29 0 6 6
3.10-3.19 0 16 16
3.00-3.09 0 30 30
2.90-2.99 0 36 36
2.80-2.89 2 69 71
2.70-2.79 5 62 67
2.60-2.69 4 50 54
2.50-2.59 9 68 77
2.40-2.49 10 64 74
2.30-2.39 7 64 71
2.20-2.29 12 44 56
2.10-2.19 8 31 39
2.00-2.09 5 24 29
1.90-1.99 3 23 26
1.80-1.89 4 11 15
1.70-1.79 0 4 4
1.60-1.69 3 2 5
1.50-1.59 1 3 4
1.40-1.49 0 1 1
0.00-1.39 0 0 0

Total 73 619 692
Men Comostecore 2.30 2.55 2.52
Standard Deviation 0.30 0.36 0.36
Cnomosite Sre- .16 -.00012AL6B +.041ALBNA +.018TRI6A +.033TRIGNA +.0019M1ATH
Mean Finl Course Orale - 2.52 I Sta ard Devation - 0.96 IR = 0.37
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Table D. 15
1990 Composite Scores using the Cognitive model with possible

decision scores and corresponding accuracies of placement.
Cumulative Percent of Students In Overall Accuracy

Numbers of Students Each Placement Cite _ __ of Placement
Placement Unsat Sat Unset Sat Accuracy No. of X of
Cateory D-F (N-1 1) A-C (N-571) D-F A-C Category Students Students
2.50- up Too High 20 348 OK Too Hig 27 56 OK Too High 20 3

Too Too Correct 401 58
below 2.50 OK 53 271 Low OK 73 44 Low Too Low 271 39
2.40- up Too High 30 412 OK Too High 41 67 OK Too High 30 4

Too Too Correct 455 66
below 2.40 OK 43 207 Low OK 59 33 Low Too Low 207 30
2.30- up Too High 37 476 OK Too High 51 77 OK Too High 37 5

Too Too Correct 512 74
below 2.A OK 36 143 Low OK 49 23 Low Too Low 143 21
2.20- up I Too High 49 520 OK Too High 67 84 OK Too High 49 7

Too Too Correct 544 79
below 2.A OK 24 99 Low OK 33 16 Low Too Low 99 14
2.10-up TooHigh 57 551 OK TooHigh 78 89 OK TooHigh 57 8

TOO Too Correct 567 82
below 2.10 OK 16 68 Low OK 22 11 Low Too Low 68 10
2.00- up Too High 62 575 OK Too High 85 93 OK Too High 62 9

Too Too Correct 586 85
below 2.00 OK 11 44 Low OK 15 7 Low Too Low 44 6
1.90 -up Too High 65 598 OK Too High 89 97 OK Too High 65 9

Too Too Correct 606 88
below 1.90 OK 8 21 Low OK 11 3 Low TooLow 21 3

1.80 -up Too High 69 609 OK Too High 95 98 OK Too High 69 10
Too Too Correct 613 89

below 1.80 OK 4 10 Low OK 5 2 Low Too Low 10 1
1.70 -up Too High 69 613 OK Too High 95 99 OK Too High 69 10

Too Too Correct 617 89
below 1.70 OK 4 6 Low OK 5 1 Low Too Low 6 1
1.60 -up Too High 72 615 OK Too High 99 99 OK Too High 72 10

Too Too Correct 616 89
below 1.60 OK 1 4 Low OK 1 1 Low Too Low 4 1
1.50 -up Too High 73 618 OK Too High 100 100 OK Too High 73 11

Too Too Correct 618 89
below 1.50 OK 0 1 Low OK 0 0 Low Too Low 1 0
Expected Composite Score = 2.17 + O,14 Final Course Grade r 0.37
Final Course Orade - 2.00 a* Expected Composite Score - 2.45 SEE2 - 0.33
M& 1. Percentages may not sum to 100S because of rounding error. 2. Standard
error of estimata
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Table D. 16
1991 Composite 5core by final calculus grade: frequency

distributions and descriptive statistics, using a 4.0 GPA scale for
the composite scores computed with the Cognitive model.

Final Course Grades in Calculus (0-4)
Composite Scores O(F) I(D) 2(C) 3(B) 4(A) Total

3.50-4.00 0 0 1 2 10 13
3.40-3.49 0 0 1 3 13 17
3.30-3.39 1 0 2 9 4 16
3.20-3.29 0 0 4 10 16 30
3.10-3.19 0 0 6 11 9 26
3.00-3.09 0 0 7 16 6 29
2.90-2.99 1 0 12 11 4 28
2.80-2.89 0 0 8 22 10 40
2.70-2.79 0 2 21 24 11 58
2.60-2.69 2 1 18 21 5 47
2.50-2.59 1 3 26 17 6 53
2.40-2.49 1 3 24 18 7 53
2.30-2.39 5 4 22 11 4 46
2.20-2.29 4 8 19 20 5 56
2.10-2.19 2 4 20 16 5 47
2.00-2.09 6 5 17 10 2 40
1.90-1.99 4 5 16 5 8 38
1.80-1.89 3 3 13 3 1 23
1.70-1.79 4 3 11 7 3 28
1.60-1.69 4 4 6 0 0 14
1.50-1.59 2 1 8 1 1 13
1.40-1.49 1 2 5 1 0 9
1.30-1.39 1 0 2 0 0 3
1.20-1.29 4 2 0 0 0 6
0.00-1.19 4 3 2 0 0 9

Total 50 53 271 238 130 742
Mean Composite Score 1.92 2.00 2.34 2.62 2.83 2.46
Standard Deviation 0.50 0.44 0,46 0.43 0.52 0.53
ICoooste Score - -.27 +.13AL6B +.036ALGBNA +. 16TRiGA +.055TRI6NA +.00 12MATHI
R - 0.501 SEE - 0.93Men Final Course Grade = 2.47 Standard Dewiation - 1.07
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Table D. 17
1991 Composite Score by combined final calculus grade: frequency

distributions and descriptive statistics, using a 4.0 GPA scale for the
composite scores computed with the Cognitive model.

Final Course Grades in Calculus
Composite No Pass Pass

Score F-D C-A Total
3.50-4.00 0 13 133.40-3.49 0 17 17
3.30-3.39 1 15 16
3.20-3.29 0 30 30
3.10-3.19 0 26 26
3.00-3.09 0 29 29
2.90-2.99 1 27 28
2.80-2.89 0 40 40
2.70-2.79 2 56 58
2.60-2.69 3 44 47
2.50-2.59 4 49 53
2.40-2.49 4 49 53
2.30-2.39 9 37
2.20-2.29 12 44 56
2.10-2.19 6 41 47
2.00-2.09 11 29 40
1.90-1.99 9 29 38
1.80-1.89 6 17 23
1.70-1.79 7 21 28
1.60-1.69 8 6 14
1.50-1.59 3 10 13
1.40-1.49 3 6 9
1.30-1.39 1 2 3
1.20-1.29 6 0 6
0.00-1.19 7 2 9

Total 103 639 742
Mom Compit Score 1.96 2.55 2.46
Stndrd Deviation 0.47 0.50 1,53

oCwoslpte Score - -.27 +.13AL68 +.036ALG6NA +. I6TRI6A .055TR16NA +.0012flATH
R - 0.501 SEE - 0.931 Me Final Course Oref - 2.47 Standrd Deviation - 1.07
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Table D. 18
1991 Composite Scores using the Cognitive model with possible

decision scores and corresponding accuracies of placement.
Cumulative Percent of Students In Overall Accuracy

Numbers of Students Each Placement eg __ of Placement
Placement LUnsat Sat Unsat Sat Accuracy No. of x of
Category D-F (N-I1) A-C (N-571) 0-F A-C Category Students Students'l
2.30-up TooIHgh 24 432 OK Too High 23 68 OK Too High 24 3

Too Too Correct 511 69
below 2.3 OK 79 207 Low OK 77 32 Low Too Low 207 28
2.20- up Too High136 476 OK Too High 35 74 OK Too High 36 5

Too Too Correct 543 73
below 2.20 OK 67 163 Low OK 65 26 Low Too Low 163 22
2.10-up TooHigh42 517 OK Too Hih 41 81 OK Too High 42 6

Too Too correct 578 78
below 2.1( OK 61 122 Low OK 59 19 Low Too Low 122 16
2.00- up Too High 53 546 OK Too High 51 85 OK Too High 53 7

Too Too Correct 596 80
below 2.00 OK 50 93 Low OK 49 15 Low Too Low 93 13
1.90 - up Too High 62 575 OK Too High 60 90 OK Too High 62 8

Too Too Correct 616 83
below 1.9d OK 41 64 Low OK 40 10 Low Too Low 64 9
1.80 - up Too High 68 592 OK Too Hgh 66 93 OK Too High 68 9

Too Too Correct 627 85
below 1.80 OK 35 47 Low OK 34 7 Low Too Low 47 6
1.70-up TooHtgh 75 613 OK TooHigh 73 96 OK TooHigh 75 10

Too Too Correct 641 86
below 1.7d OK 28 26 Low 0K 27 4 Low Too Low 26 4
1.60 - up Too High 83 619 OK Too High 81 97 OK Too High 83 11

Too Too Correct 639 86
below 1.60 OK 20 20 Low OK 19 3 Low Too Low 20 3
1.50 - up Too High 86 629 OK Too High 83 98 OK Too High 86 12

Too Too Correct 646 87
below 1.C OK 17 10 Low OK 17 2 Low Too Low 10 1
1.40 - up Too High 89 635 0K Too High 86 99 OK Too High 89 12

Too Too Correct 649 87
below 1.4( OK 14 4 Low OK 14 1 Low Too Low 4 1
1.30-up TooHigh 90 637 OK TooHigh 87 100 OK TooHigh 90 12

TOO Too Correct 650 88
below I.3 OK 13 2 Low OK 13 0 Low Too Low 2 0
Expected Composite Score = 1.85 + 0.25 Final Course Orade r - 050
Final Course Orade - 2.00 so Expecte Composite Score = 2.35 SE 2 = 0.46
Not& 1. Percentages may not sum to 1002 because of rounding error. 2. Standard
error of estimate.
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Table D. 19
1991 (reduced) Composite Score by final calculus grade. frequency
distributions and descriptive statistics, using a 40 GPA scale for

the composite scores computed with the Cognitive model.
Final Course Grades in Calculus (0-4)

Composite Scores O(F) I(D) 2(C) 3(B) 4(A) Total
3.50-4.00 0 0 0 1 2 3
3.40-3.49 0 0 1 1 7 9
3.30-3.39 0 0 2 4 8 14
3.20-3.29 1 0 1 9 4 15
3.10-3.19 0 0 4 8 11 23
3.00-3.09 0 0 8 ]1 5 24
2.90-2.99 0 0 8 12 3 23
2.80-2.89 1 0 11 8 6 26
2.70-2.79 0 0 9 20 6 35
2.60-2.69 0 3 18 18 10 49
2.50-2.59 2 2 24 25 5 58
2.40-2.49 2 2 16 8 5 33
2.30-2.39 1 6 23 12 4 46
2.20-2.29 5 3 20 16 6 50
2.10-2.19 3 6 15 11 1 36
2.00-2.09 4 4 21 12 3 I4
1.90-1.99 4 6 10 4 6 30
1.80-1.89 5 3 16 5 4 33
1.70-1.79 2 2 7 5 1 17
1.60-1.69 4 5 9 0 1 19
1.50-1.59 1 1 6 1 0 9
1.40-1.49 1 1 5 1 0 8
1.30-1.39 1 1 3 0 0 5
1.20-1.29 4 2 1 0 0 7
0.00-1.19 4 3 1 0 0 8

Total 45 50 239 192 98 624
MMom Cor ite S ore 1.90 1.97 2.30 2.57 2.74 2.40
S d Deviation 0..48 0.42 0.45 0.42 0.51 0.52
Comoite Score - -. 18 +.13 AL6B + .031AL6BNA +. 18 TRI6A + .044 TRI6NA + .0013MATHI
Mean Final Course Orad = 2.40 1 StdUd Deviation - 1.07 1 R - 0.48
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Table D.20
1991 (reduced) Composite Score by combined final calculus grade:

freauency distributions and descriptive statistics, using a 4.0 GPA
sc.e for the composite scores computed with the Cognitive model.

Final Course Grades in Calculus
Composite No Pass Pass

Score F-D C-A Total
3.50-4.00 0 3 3
3.40-3.49 0 9 9
3.30-3.39 0 14 14
3.20-3.29 1 14 15
3.10-3.19 0 23 23
3.00-3.09 0 24 24
2.90-2.99 0 23 23
2.80-2.89 1 25 26
2.70-2.79 0 35 35
2.60-2.69 3 46 49
2.50-2.59 4 54 58
2.40-2.49 4 29 33
2.30-2.39 7 39 46
2.20-2.29 8 42 50
2.10-2.19 9 27 36
2.00-2.09 8 36 44
1.90-1.99 10 20 30
1.80-1.89 8 25 33
1.70-1.79 4 13 17
1,60-1.69 9 10 19
1.50-1.59 2 7 9
1.40-1.49 2 6 8
1.30-1.39 2 3 5
1.20-1.29 6 1 7
0.00-1.19 7 1 8

Total 1 95 529 624
.Mean Composite Soe 1.94 2.48 2.40
Standard Deviation 1 O. 45 O,.48 05
Compioste Score --. 18 + .1 3AL6B + .03 1ALC.BNA + .I 1TR16A + .044"r.16NA + .00 13MATq
Mean Final Course Grade=-2.40 1 Standard Deviation -l.07 1 R -0.48
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Table D.21
1991 (reduced) Composite Scores using the Cognitive model with

possible decision scores and corresponding accuracies of placement
For comparing Cognitive vs. Computerized models.

Cumulative Percent of Students in Overall Accuracy
Numbers of Students Each Placement of Placement

Placement Unsat Sat Unsat Sat Accuracy No. of 9 of
Category D-F (N-1 I) A-C (N-571) D-F A-C Category Students StudentsI
2.30- up Too High 20 338 X) Too High 21 64 OK Too High 20 3

Too Too Correct 413 66
below 2.3d OK 75 191 Low OK 79 36 Low Too Low 191 31
2.20- up Too High 28 380 K Too High 29 72 OK Too High 28 4

Too Too Correct 447 72
below 2.20 OK 67 149 Low OK 71 28 Low Too Low 149 24
2.10 - up Too High 37 407 OK Too High 39 77 OK Too High 37 6

Too Too Correct 465 75
below 2.1d OK 58 122 Low OK 61 23 Low Too Low 122 20

2.00- up Too High 45 443 OK Too High 47 84 OK Too High 45 7
Too Too Correct 493 79

below 2.0 OK 50 86 Low OK 53 16 Low Too Low 86 14
1.90 - up Too High 55 463 OK Too High 58 88 OK Too High 55 9

Too Too Correct 503 81
below 1.90 OK 40 66 Low OK 42 12 Low Too Low 66 11
1.80 - up Too High 63 488 OK Too High 66 92 OK Too High 63 10

TOO Too Correct 520 83
below 1.80 OK 32 41 Low OK 34 8 Low Too Low 41 7
1.70-up Too High 67 501 OK Too High l 95 OK Too High 67 11

Too Too Correct 529 85
below 1.70 OK 28 28 Low OK 29 5 Low Too Low 28 4
1.60-up Too High 76 511 OK Too High 80 97 OK Too High 76 12

Too Too Correct 530 85
below 1.6 OK 19 18 Low OK 20 3 Low Too Low 18 3
1.50-up Too High 78 518 OK Too High 82 98 OK Too High 78 13

Too Too Correct 535 86
below 15A OK 17 11 Low OK 18 2 Low Too Low 11 2

1.40 -up Too High 80 524 OK Too High 84 99 OK Too High 80 13
Too Too Correct 539 86

below 1.4. OK 15 5 Low OK 16 1 Low Too Low 5 1
1.30 -up Too High 82 527 OK Too High 86 100 OK Too High 82 13

Too Too Correct 540 87
below 1 03 OK 13 2 Low OK 14 0 Low Too Low 2 0
Expected Composite Score - 1.84 + 0.23 Final Course Orade r 0.48
Final Course Orade - 2.00 is Expected Composite Score - 2.31 SEE 2 - 0.45
Nt&. 1. Percentages may not sum to 1002 because of rounding error. 2. Standard error
of estimate.
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